已知橢圓的左右焦點(diǎn)分別為,短軸兩個(gè)端點(diǎn)為,且四邊形是邊長(zhǎng)為2的正方形。

(1)求橢圓方程;   (2)若分別是橢圓長(zhǎng)軸的左右端點(diǎn),動(dòng)點(diǎn)滿(mǎn)足,連接,交橢圓于點(diǎn)。證明:為定值;

(3)在(2)的條件下,試問(wèn)軸上是否存在異于點(diǎn)的定點(diǎn),使得以為直徑的圓恒過(guò)直線(xiàn)的交點(diǎn),若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。

解:(1),,橢圓方程為

 (2),設(shè),則

直線(xiàn),即,

代入橢圓。

。

,

(3)設(shè)存在滿(mǎn)足條件,則。

,,則由

得  ,從而得。

存在滿(mǎn)足條件。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省高三第一次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓的左右焦點(diǎn)分別是,直線(xiàn)與橢圓交于兩點(diǎn),.當(dāng)時(shí),M恰為橢圓的上頂點(diǎn),此時(shí)△的周長(zhǎng)為6.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)橢圓的左頂點(diǎn)為A,直線(xiàn)與直線(xiàn)分別相交于點(diǎn),問(wèn)當(dāng)

變化時(shí),以線(xiàn)段為直徑的圓被軸截得的弦長(zhǎng)是否為定值?若是,求出這個(gè)定值,

若不是,說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓數(shù)學(xué)公式的左右焦點(diǎn)分別是F1,F(xiàn)2,過(guò)右焦點(diǎn)F2且斜率為k的直線(xiàn)與橢圓交于A(yíng),B兩點(diǎn).
(1)若k=1,求|AB|的長(zhǎng)度、△ABF1的周長(zhǎng);
(2)若數(shù)學(xué)公式,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的左右焦點(diǎn)分別是,直線(xiàn)與橢圓交于兩點(diǎn)且當(dāng)時(shí),M是橢圓的上頂點(diǎn),且△的周長(zhǎng)為6.

(1)求橢圓的方程;

(2)設(shè)橢圓的左頂點(diǎn)為A,直線(xiàn)與直線(xiàn):

分別相交于點(diǎn),問(wèn)當(dāng)變化時(shí),以線(xiàn)段為直徑的圓

軸截得的弦長(zhǎng)是否為定值?若是,求出這個(gè)定值,若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的左右焦點(diǎn)分別是,直線(xiàn)與橢圓交于兩點(diǎn)且當(dāng)時(shí),M是橢圓的上頂點(diǎn),且△的周長(zhǎng)為6.

(1)求橢圓的方程;

(2)設(shè)橢圓的左頂點(diǎn)為A,直線(xiàn)與直線(xiàn):

分別相交于點(diǎn),問(wèn)當(dāng)變化時(shí),以線(xiàn)段為直徑的圓

軸截得的弦長(zhǎng)是否為定值?若是,求出這個(gè)定值,若不是,

說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的左右焦點(diǎn)分別是,直線(xiàn)與橢圓交于兩點(diǎn)且當(dāng)時(shí),M是橢圓的上頂點(diǎn),且△的周長(zhǎng)為6.

(1)求橢圓的方程;

(2)設(shè)橢圓的左頂點(diǎn)為A,直線(xiàn)與直線(xiàn):

分別相交于點(diǎn),問(wèn)當(dāng)變化時(shí),以線(xiàn)段為直徑的圓

軸截得的弦長(zhǎng)是否為定值?若是,求出這個(gè)定值,若不是,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案