【題目】如圖,在四棱錐中,底面是平行四邊形,,側(cè)面底面,,,,分別為,的中點(diǎn),點(diǎn)在線段上.
(Ⅰ)求證:平面.
(Ⅱ)若為的中點(diǎn),求證:平面.
(Ⅲ)如果直線與平面所成的角和直線與平面所在的角相等,求的值.
【答案】(Ⅰ)證明見解析;(Ⅱ)證明見解析;(Ⅲ).
【解析】
試題分析:
(Ⅰ)由平行四邊形的性質(zhì)可得,有中點(diǎn)的性質(zhì)有,則,
由面面垂直的性質(zhì)定理可得,結(jié)合線面垂直的判斷定理可得平面.
(Ⅱ)由三角形中位線的性質(zhì)可得,則平面,同理,得平面,利用面面平行的判斷定理可得平面平面,則平面.
(Ⅲ)由題意可知,,兩兩垂直,以,,分別為軸,軸和軸建立空間直角坐標(biāo)系,結(jié)合幾何關(guān)系點(diǎn)的坐標(biāo)可得平面的法向量,平面的法向量為,由于直線與平面所成的角和此直線與平面所成的角相等,據(jù)此結(jié)合空間向量計(jì)算可得.
試題解析:
(Ⅰ)證明:在平行四邊形中,
∵,,,
∴,∵,分別為,的中點(diǎn),
∴,∴,
∵側(cè)面底面,且,
∴底面,∴,
又∵,平面,平面,
∴平面.
(Ⅱ)證明:∵為的中點(diǎn),為的中點(diǎn),
∴,又∵平面,平面,
∴平面,同理,得平面,
又∵,平面,平面,
∴平面平面,又∵平面,
∴平面.
(Ⅲ)解:∵底面,,
∴,,兩兩垂直,故以,,分別為軸,軸和軸建立如圖空間直角坐標(biāo)系,
則,,,,,,
所以,,,
設(shè),則,
∴,,
易得平面的法向量,
設(shè)平面的法向量為,則:
,即,令,得,
∴直線與平面所成的角和此直線與平面所成的角相等,
∴,即,
∴,解得或(舍去),
故.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)和函數(shù),
(1)若為偶函數(shù),試判斷的奇偶性;
(2)若方程有兩個(gè)不等的實(shí)根,則
①試判斷函數(shù)在區(qū)間上是否具有單調(diào)性,并說明理由;
②若方程的兩實(shí)根為求使成立的的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為實(shí)數(shù),已知,
(1)若函數(shù),求的值;
(2)當(dāng)時(shí),求證:函數(shù)在上是單調(diào)遞增函數(shù);
(3)若對(duì)于一切,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知常數(shù),向量, ,經(jīng)過點(diǎn),以為方向向量的直線與經(jīng)過點(diǎn),以為方向向量的直線交于點(diǎn),其中.
()求點(diǎn)的軌跡方程,并指出軌跡.
()若點(diǎn),當(dāng)時(shí), 為軌跡上任意一點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.
(1)當(dāng)m=-1時(shí),求A∪B;
(2)若AB,求實(shí)數(shù)m的取值范圍;
(3)若A∩B=,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,為等邊三角形,分別為的中點(diǎn),為的中點(diǎn),,將沿折起到的位置,使得平面平面,
為的中點(diǎn),如圖2.
(1)求證:平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是奇函數(shù).
(1)求的值;
(2)判斷并證明函數(shù)的單調(diào)性;
(3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù),如果滿足:對(duì)任意,存在常數(shù),都有成立,則稱函數(shù)是上的有界函數(shù),其中稱為函數(shù)的上界.已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請(qǐng)說明理由;
(2)若函數(shù)在上是以3為上界的有界函數(shù),求實(shí)數(shù)的取值范圍;
(3)若,函數(shù)在上的上界是,求的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有兩個(gè)不透明的箱子,每個(gè)箱子都裝有4個(gè)完全相同的小球,球上分別標(biāo)有數(shù)字1,2,3,4.
(1)甲從其中一個(gè)箱子中摸出一個(gè)球,乙從另一個(gè)箱子摸出一個(gè)球,誰摸出的球上標(biāo)的數(shù)字大誰就獲勝(若數(shù)字相同則為平局),求甲獲勝的概率;
(2)摸球方法與(1)同,若規(guī)定:兩人摸到的球上所標(biāo)數(shù)字相同甲獲勝,所標(biāo)數(shù)字不相同則乙獲勝,這樣規(guī)定公平嗎?請(qǐng)說明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com