【題目】已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.
(1)當m=-1時,求A∪B;
(2)若AB,求實數(shù)m的取值范圍;
(3)若A∩B=,求實數(shù)m的取值范圍.
【答案】(1)A∪B={x|-2<x<3}(2)(3)
【解析】試題分析:(1)m=-1 ,用軸表示兩個集合,做并集運算,注意空心點,實心點。(2)由于AB,首先要保證1-m>2m,即集合B非空,然后由數(shù)軸表示關(guān)系,注意等號是否可取。(3)空集有兩種情況,一種是集合B為空集,一種是集合B非空,此時用數(shù)燦表示,寫出代數(shù)關(guān)系,注意等號是否可取。
試題解析:(1)當m=-1時, B={x|-2<x<2},則A∪B={x|-2<x<3}
(2)由AB知,解得,
即m的取值范圍是
(3)由A∩B=得
①若,即時,B=符合題意
②若,即時,需或
得或,即
綜上知,即實數(shù)的取值范圍為
科目:高中數(shù)學 來源: 題型:
【題目】海上某貨輪在A處看燈塔B在貨輪的北偏東75°,距離為12海里;在A處看燈塔C在貨輪的北偏西30°,距離為8海里;貨輪向正北由A處行駛到D處時看燈塔B在貨輪的北偏東120°.(要畫圖)
(1)A處與D處之間的距離;
(2)燈塔C與D處之間的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】軸截面是邊長為4 的等邊三角形的圓錐的直觀圖如圖所示,過底面圓周上任一點作一平面α,且α與底面所成的二面角為 ,已知α與圓錐側(cè)面交線的曲線為橢圓,則此橢圓的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2x,g(x)=ax+2(a>0),且對任意的x1∈[﹣1,2],都存在x2∈[﹣1,2],使f(x2)=g(x1),則實數(shù)a的取值范圍是( )
A.[3,+∞)
B.(0,3]
C.[ ,3]
D.(0, ]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】己知函數(shù), .
(I)求函數(shù)上零點的個數(shù);
(II)設(shè),若函數(shù)在上是增函數(shù).
求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某家具廠生產(chǎn)一種課桌,每張課桌的成本為50元,出廠單價定為80元,該廠為鼓勵銷售商多訂購,決定一次訂購量超過100張時,每超過一張,這批訂購的全部課桌出廠單價降低0.02元.根據(jù)市場調(diào)查,銷售商一次訂購量不會超過1000張.
(1)設(shè)一次訂購量為x張,課桌的實際出廠單價為P元,求P關(guān)于x的函數(shù)關(guān)系式P(x);
(2)當一次訂購量x為多少時,該家具廠這次銷售課桌所獲得的利潤f(x)最大?其最大利潤是多少元?(家具廠售出一張課桌的利潤=實際出廠單價﹣成本).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別是a,b,c,已知2cosA(bcosC+ccosB)=a.
(1)求角A;
(2)若a= ,b+c=5,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com