【題目】函數(shù)圖象上不同兩點,,,處的切線的斜率分別是,,規(guī)定叫曲線在點與點之間的“彎曲度”,給出以下命題:
(1)函數(shù)圖象上兩點、的橫坐標(biāo)分別為1,2,則;
(2)存在這樣的函數(shù),圖象上任意兩點之間的“彎曲度”為常數(shù);
(3)設(shè)點、是拋物線,上不同的兩點,則;
(4)設(shè)曲線上不同兩點,,,,且,若恒成立,則實數(shù)的取值范圍是;
以上正確命題的序號為__(寫出所有正確的)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為等差數(shù)列,各項為正的等比數(shù)列的前項和為,,,__________.在①;②;③這三個條件中任選其中一個,補充在橫線上,并完成下面問題的解答(如果選擇多個條件解答,則以選擇第一個解答記分).
(1)求數(shù)列和的通項公式;
(2)求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓:()過點,離心率為,其左、右焦點分別為,,且過焦點的直線交橢圓于,.
(Ⅰ)求橢圓的方程;
(Ⅱ)若點的坐標(biāo)為,設(shè)直線與直線的斜率分別為,試證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的三棱錐中,是邊長為2的等邊三角形,,是的中位線,為線段的中點.
(1)證明:.
(2)若二面角為直二面角,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為考察高中生的性別與是否喜歡數(shù)學(xué)課程之間的關(guān)系,某校在高中生中隨機抽取100名學(xué)生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡數(shù)學(xué) | 不喜歡數(shù)學(xué) | 合計 | |
男生 | 40 | ||
女生 | 30 | ||
合計 | 50 | 100 |
(1)請將上面的列聯(lián)表補充完整;
(2)能否在犯錯誤的概率不超過0.001的前提下認(rèn)為“喜歡數(shù)學(xué)”與性別有關(guān)?說明你的理由;
(3)若在接受調(diào)查的所有男生中按照“是否喜歡數(shù)學(xué)”進(jìn)行分層抽樣,現(xiàn)隨機抽取6人,再從6人中抽取3人,求至少有1人“不喜歡數(shù)學(xué)”的概率.
下面的臨界值表供參考:
0.05 | 0.010 | 0.005 | 0.001 | |
k | 3.841 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,右焦點為。斜率為1的直線與橢圓交于兩點,以為底邊作等腰三角形,頂點為。
(1)求橢圓的方程;
(2)求的面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點,其短半軸長為,一個焦點坐標(biāo)為,點在橢圓上,點在直線上的點,且.
證明:直線與圓相切;
求面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com