設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,對任意的n∈N+,都有Sn=(m+1)-man(m為正常數(shù)).
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)數(shù)列{bn}滿足b1=2a1,數(shù)學(xué)公式,(n≥2,n∈N*),求數(shù)列{bn}的通項(xiàng)公式;
(3)在滿足(2)的條件下,求數(shù)列{數(shù)學(xué)公式}的前n項(xiàng)和Tn

證明:(1)∵Sn=(m+1)-man…①
∴Sn+1=(m+1)-man+1,…②
②-①得
an+1=-man+1+man,即(m+1)an+1=man,

∴數(shù)列{an}是等比數(shù)列;
解:(2)∵n≥2,n∈N*時,,
∴bn•bn-1=bn-1•bn
=1
又∵n=1時,S1=a1=(m+1)-ma1,
∴a1=1,b1=2a1=2,
∴數(shù)列{}是一個以為首項(xiàng),以1為公式差的等差數(shù)列
=n-
∴bn=
(3)∵=(2n-1)2n
∴Tn=1•21+3•22+5•23…+(2n-1)2n…①
2Tn=1•22+3•23…+(2n-3)2n+(2n-1)2n+1…②
②-①得:
Tn=-2-2(22+23…+2n)+(2n-1)2n+1
=6+(2n-3)2n+1
分析:(1)由已知求出Sn+1=(m+1)-man+1,與Sn=(m+1)-man相減整理后可得為定值,進(jìn)而根據(jù)等比數(shù)列定義可得結(jié)論;
(2)由已知求出b1,再由分離常數(shù)后構(gòu)造新數(shù)列{},可得數(shù)列{}是一個以為首項(xiàng),以1為公式差的等差數(shù)列,進(jìn)而求出數(shù)列{bn}的通項(xiàng)公式;
(3)根據(jù)(2)的結(jié)論,利用錯位相減法,可得數(shù)列{}的前n項(xiàng)和Tn
點(diǎn)評:本題是數(shù)列問題比較經(jīng)典的考題,是高考試卷考查數(shù)列的常見題型,首先要根據(jù)定義法,迭代法、構(gòu)造數(shù)列法等求出數(shù)列的通項(xiàng)公式,再利用裂項(xiàng)法,錯位相減法等求數(shù)列的前n項(xiàng)和.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,Sn=(-1)nan-
1
2n
,n∈N+,則a2+a4+a6+…+a100=
1
3
(1-
1
2100
)
1
3
(1-
1
2100
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,Sn=λan-1(λ為常數(shù),n=1,2,3,…).
(I)若a3=a22,求λ的值;
(II)是否存在實(shí)數(shù)λ,使得數(shù)列{an}是等差數(shù)列?若存在,求出λ的值;若不存在.請說明理由
(III)當(dāng)λ=2時,若數(shù)列{bn}滿足bn+1=an+bn(n=1,2,3,…),且b1=
3
2
,令cn=
an
(an+1) bn
,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•杭州二模)在等差數(shù)列{an},等比數(shù)列{bn}中,a1=b1=1,a2=b2,a4=b3≠b4
(Ⅰ)設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,求anbn和Sn;
(Ⅱ)設(shè)Cn=
anbnSn+1
(n∈N*),Rn=C1+C2+…+Cn,求Rn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,Sn=n2+pn,n∈N*,其中p是實(shí)數(shù).
(1)若數(shù)列{
Sn
}
為等差數(shù)列,求p的值;
(2)若對于任意的m∈N*,am,a2m,a4m成等比數(shù)列,求p的值;
(3)在(2)的條件下,令b1=a1,bn=a2n-1,其前n項(xiàng)和為Tn,求Tn關(guān)于n的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn為數(shù)列{an}的前N項(xiàng)和,且有S1=a,Sn+Sn-1=3n2,n=2,3,4,…
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{an}是單調(diào)遞增數(shù)列,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案