【題目】在三棱錐P﹣ABC中,DAB的中點(diǎn).

1)與BC平行的平面PDEAC于點(diǎn)E,判斷點(diǎn)EAC上的位置并說(shuō)明理由如下:

2)若PA=PB,且△PCD為銳角三角形,又平面PCD⊥平面ABC,求證:AB⊥PC

【答案】1中點(diǎn)(2)詳見解析

【解析】試題分析:(1)根據(jù)線面平行的性質(zhì)進(jìn)行判斷即可:

2)根據(jù)面面垂直的性質(zhì)定理進(jìn)行證明.

1)解:EAC中點(diǎn).理由如下:

平面PDEACE,

即平面PDE∩平面ABC=DE,

BC∥平面PDF,BC平面ABC,

所以BC∥DE,

△ABC中,因?yàn)?/span>DAB的中點(diǎn),所以EAC中點(diǎn);

2)證:因?yàn)?/span>PA=PB,DAB的中點(diǎn),

所以AB⊥PD

因?yàn)槠矫?/span>PCD⊥平面ABC,平面PCD∩平面ABC=CD,

在銳角△PCD所在平面內(nèi)作PO⊥CDO,

PO⊥平面ABC

因?yàn)?/span>AB平面ABC,

所以PO⊥AB

PO∩PD=PPO,PD平面PCD

AB⊥平面PCD,

PC平面PCD

所以AB⊥PC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其導(dǎo)函數(shù)設(shè)為.

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若函數(shù)有兩個(gè)極值點(diǎn),,試用表示

(Ⅲ)在(Ⅱ)的條件下,若的極值點(diǎn)恰為的零點(diǎn),試求,這兩個(gè)函數(shù)的所有極值之和的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知(m,n為常數(shù)),在處的切線方程為

(Ⅰ)求的解析式并寫出定義域;

(Ⅱ)若,使得對(duì)上恒有成立,求實(shí)數(shù)的取值范圍;

(Ⅲ)若有兩個(gè)不同的零點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形中,,,、分別是、的中點(diǎn),將三角形沿折起,則下列說(shuō)法正確的是______________.

1)不論折至何位置(不在平面內(nèi)),都有平面;

2)不論折至何位置,都有

3)不論折至何位置(不在平面內(nèi)),都有

4)在折起過(guò)程中,一定存在某個(gè)位置,使.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;

2)若函數(shù)有兩個(gè)不同極值點(diǎn),求實(shí)數(shù)的取值范圍;

3)當(dāng)時(shí),求證:對(duì)任意,恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將邊長(zhǎng)為2的正沿著高折起,使,若折起后四點(diǎn)都在球的表面上,則球的表面積為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在等腰梯形中,分別為的中點(diǎn).現(xiàn)分別沿折起,使得平面平面,平面平面,連接,如圖2.

(1)求證:平面平面;

(2)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:若數(shù)列滿足,存在實(shí)數(shù),對(duì)任意,都有,則稱數(shù)列有上界,是數(shù)列的一個(gè)上界,已知定理:?jiǎn)握{(diào)遞增有上界的數(shù)列收斂(即極限存在).

(1)數(shù)列是否存在上界?若存在,試求其所有上界中的最小值;若不存在,請(qǐng)說(shuō)明理由;

(2)若非負(fù)數(shù)列滿足),求證:1是非負(fù)數(shù)列的一個(gè)上界,且數(shù)列的極限存在,并求其極限;

(3)若正項(xiàng)遞增數(shù)列無(wú)上界,證明:存在,當(dāng)時(shí),恒有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1是某條公共汽車線路收支差額與乘客量的圖象.由于目前本條線路虧損,公司有關(guān)人員提出了兩種扭虧為盈的建議,如圖23所示.你能根據(jù)圖象判斷下列說(shuō)法正確的是(

①圖2的建議為減少運(yùn)營(yíng)成本;②圖2的建議可能是提高票價(jià);

③圖3的建議為減少運(yùn)營(yíng)成本;④圖3的建議可能是提高票價(jià).

A.①④B.②④C.①③D.②③

查看答案和解析>>

同步練習(xí)冊(cè)答案