已知函數(shù)f(x)=x3-3x.
(1)求曲線y=f(x)在點x=2處的切線方程;
(2)若過點A(1,m)(m≠-2)可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.
分析:(1)先求導數(shù)f'(x)=3x2-3,欲求出切線方程,只須求出其斜率即可,故先利用導數(shù)求出在x=2處的導函數(shù)值,再結合導數(shù)的幾何意義即可求出切線的斜率.從而問題解決.
(2)先將過點A(1,m)(m≠-2)可作曲線y=f(x)的三條切線轉化為:方程2x3-3x2+m+3=0(*)有三個不同實數(shù)根,記g(x)=2x3-3x2+m+3,g'(x)=6x2-6x=6x(x-1),下面利用導數(shù)研究函數(shù)g(x)的零點,從而求得m的范圍.
解答:解:(1)f'(x)=3x2-3,f'(2)=9,f(2)=23-3×2=2(2分)
∴曲線y=f(x)在x=2處的切線方程為y-2=9(x-2),即9x-y-16=0(4分)
(2)過點A(1,m)向曲線y=f(x)作切線,設切點為(x0,y0
則y0=x03-3x0,k=f'(x0)=3x02-3.
則切線方程為y-(x03-3x0)=(3x02-3)(x-x0)(6分)
將A(1,m)代入上式,整理得2x03-3x02+m+3=0.
∵過點A(1,m)(m≠-2)可作曲線y=f(x)的三條切線
∴方程2x3-3x2+m+3=0(*)有三個不同實數(shù)根、(8分)
記g(x)=2x3-3x2+m+3,g'(x)=6x2-6x=6x(x-1)、
令g'(x)=0,x=0或1、(10分)
則x,g'(x),g(x)的變化情況如下表
x (-∞,0) 0 (0,1) 1 (1,+∞)
g'(x) + 0 - 0 +
g(x) 遞增 極大 遞減 極小 遞增
當x=0,g(x)有極大值m+3;x=1,g(x)有極小值m+2、(12分)
由題意有,當且僅當
g(0)>0
g(1)<0
,
m+3>0
m+2<0
,-3<m<-2
時,
函數(shù)g(x)有三個不同零點、
此時過點A可作曲線y=f(x)的三條不同切線.故m的范圍是(-3,-2)(14分)
點評:本小題主要考查函數(shù)單調性的應用、利用導數(shù)研究曲線上某點切線方程、不等式的解法等基礎知識,考查運算求解能力,考查數(shù)形結合思想、化歸與轉化思想.屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案