解::因?yàn)?img width=364 height=41 src="http://thumb.zyjl.cn/pic1/1899/sx/151/231751.gif">,所以f(1)f(2)<0,因此f(x)在區(qū)間(1,2)上存在零點(diǎn),又因?yàn)閥=與y=-在(0,+)上都是增函數(shù),因此在(0,+)上是增函數(shù),所以零點(diǎn)個(gè)數(shù)只有一個(gè)方法2:把函數(shù)的零點(diǎn)個(gè)數(shù)個(gè)數(shù)問(wèn)題轉(zhuǎn)化為判斷方程解的個(gè)數(shù)問(wèn)題,近而轉(zhuǎn)化成判斷與交點(diǎn)個(gè)數(shù)問(wèn)題,在坐標(biāo)系中畫(huà)出圖形
由圖看出顯然一個(gè)交點(diǎn),因此函數(shù)的零點(diǎn)個(gè)數(shù)只有一個(gè)
袋中有50個(gè)大小相同的號(hào)牌,其中標(biāo)著0號(hào)的有5個(gè),標(biāo)著n號(hào)的有n個(gè)(n=1,2,…9),現(xiàn)從袋中任取一球,求所取號(hào)碼的分布列,以及取得號(hào)碼為偶數(shù)的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
解:因?yàn)橛胸?fù)根,所以在y軸左側(cè)有交點(diǎn),因此
解:因?yàn)楹瘮?shù)沒(méi)有零點(diǎn),所以方程無(wú)根,則函數(shù)y=x+|x-c|與y=2沒(méi)有交點(diǎn),由圖可知c>2
13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0
若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點(diǎn)
(2)因?yàn)閒(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)
數(shù)字1,2,3,4恰好排成一排,如果數(shù)字i(i=1,2,3,4)恰好出現(xiàn)在第i個(gè)位置上則稱有一個(gè)巧合,求巧合數(shù)的分布列。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
19C.解:由得,所以,所以,因?yàn)閒(x)=x,所以解得x=-1或-2或2,所以選C
調(diào)查某醫(yī)院某段時(shí)間內(nèi)嬰兒出生時(shí)間與性別的關(guān)系,得到以下數(shù)據(jù)。
晚上 | 白天 | 合計(jì) | |
男嬰 | 24 | 31 | 55 |
女?huà)?/p> | 8 | 26 | 34 |
合計(jì) | 32 | 57 | 89 |
試問(wèn)有多大把握認(rèn)為嬰兒的性別與出生時(shí)間有關(guān)系?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
4. m>2或m<-2 解析:因?yàn)閒(x)=在(-1,1)內(nèi)有零點(diǎn),所以f(-1)f(1)<0,即(2+m)(2-m)<0,則m>2或m<-2
隨機(jī)變量的所有等可能取值為1,2…,n,若,則( )
A. n=3 B.n=4 C. n=5 D.不能確定
5.m=-3,n=2 解析:因?yàn)?img width=127 height=24 src="http://thumb.zyjl.cn/pic1/1899/sx/81/253081.gif">的兩零點(diǎn)分別是1與2,所以,即,解得
6.解析:因?yàn)?img width=95 height=24 src="http://thumb.zyjl.cn/pic1/1899/sx/86/253086.gif">只有一個(gè)零點(diǎn),所以方程只有一個(gè)根,因此,所以
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012學(xué)年浙江省杭州七校高一第二學(xué)期期中聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)f (x)=sin 2x+(sin x-cos x)(sin x+cos x),其中x∈R.
(Ⅰ) 該函數(shù)的圖象可由 的圖象經(jīng)過(guò)怎樣的平移和伸縮變換得到?
(Ⅱ)若f (θ)=,其中,求cos(θ+)的值;
【解析】第一問(wèn)中,
即變換分為三步,①把函數(shù)的圖象向右平移,得到函數(shù)的圖象;
②令所得的圖象上各點(diǎn)的縱坐標(biāo)不變,把橫坐標(biāo)縮短到原來(lái)的倍,得到函數(shù)的圖象;
③令所得的圖象上各點(diǎn)的橫坐標(biāo)不變,把縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,得到函數(shù)的圖象;
第二問(wèn)中因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220027495699378_ST.files/image008.png">,所以,則,又 ,,從而
進(jìn)而得到結(jié)論。
(Ⅰ) 解:
即!3分
變換的步驟是:
①把函數(shù)的圖象向右平移,得到函數(shù)的圖象;
②令所得的圖象上各點(diǎn)的縱坐標(biāo)不變,把橫坐標(biāo)縮短到原來(lái)的倍,得到函數(shù)的圖象;
③令所得的圖象上各點(diǎn)的橫坐標(biāo)不變,把縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,得到函數(shù)的圖象;…………………………………3分
(Ⅱ) 解:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220027495699378_ST.files/image008.png">,所以,則,又 ,,從而……2分
(1)當(dāng)時(shí),;…………2分
(2)當(dāng)時(shí);
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com