已知函數(shù) 是奇函數(shù).
(1)求實(shí)數(shù)的值;
(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(3)求函數(shù)的值域.
(1);(2);(3).
解析試題分析:(1)利用奇函數(shù)的定義,由列式求解;(2)畫出函數(shù)的圖象,由圖象列式求解;(3)分段求值域:當(dāng)時,=;當(dāng)時,=0;當(dāng)時,=,最后求并集得函數(shù)的值域.
試題解析:(1)當(dāng)時,.∵是奇函數(shù),∴. 2分
∴,∴. 4分
(2)由(1)得=由圖象得 7分
解得. 8分
(3)當(dāng)時,=;當(dāng)時,=0;當(dāng)時,=,∴的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2b/5/1mwvm2.png" style="vertical-align:middle;" />. 13分
考點(diǎn):函數(shù)的性質(zhì)(單調(diào)性、奇偶性、值域).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
新晨投資公司擬投資開發(fā)某項(xiàng)新產(chǎn)品,市場評估能獲得萬元的投資收益.現(xiàn)公司準(zhǔn)備制定一個對科研課題組的獎勵方案:獎金(單位:萬元)隨投資收益(單位:萬元)的增加而增加,且獎金不低于萬元,同時不超過投資收益的.
(1)設(shè)獎勵方案的函數(shù)模型為,試用數(shù)學(xué)語言表述公司對獎勵方案的函數(shù)模型的基本要求.
(2)下面是公司預(yù)設(shè)的兩個獎勵方案的函數(shù)模型:
①; ②
試分別分析這兩個函數(shù)模型是否符合公司要求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:,若不建隔熱層,每年能源消耗費(fèi)用為8萬元.設(shè)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(1)求k的值及的表達(dá)式;
(2)隔熱層修建多厚時,總費(fèi)用達(dá)到最小,并求最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù).若的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/00/3/cu2t03.png" style="vertical-align:middle;" />,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x2+4ax+2a+6.
(1)若函數(shù)f(x)的值域?yàn)閇0,+∞),求a的值;
(2)若函數(shù)f(x)的函數(shù)值均為非負(fù)數(shù),求g(a)=2-a|a+3|的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
統(tǒng)計表明:某種型號的汽車在勻速行駛中每小時的耗油量(升)關(guān)于行駛速度(千米/每小時)的函數(shù)解析式可以表示為,已知甲、乙兩地相距100千米.
(1)當(dāng)汽車以40千米/小時的速度行駛時,從甲地到乙地要耗油多少升?
(2)當(dāng)汽車以多大速度行駛時,從甲地到乙地耗油最少?最少為多少升?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,一個半圓和長方形組成的鐵皮,長方形的邊為半圓的直徑,為半圓的圓心,,,現(xiàn)要將此鐵皮剪出一個等腰三角形,其底邊.
(1)設(shè),求三角形鐵皮的面積;
(2)求剪下的鐵皮三角形的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
有一座大橋既是交通擁擠地段,又是事故多發(fā)地段,為了保證安全,交通部門規(guī)定.大橋上的車距與車速和車長的關(guān)系滿足:(為正的常數(shù)),假定車身長為,當(dāng)車速為時,車距為2.66個車身長.
寫出車距關(guān)于車速的函數(shù)關(guān)系式;
應(yīng)規(guī)定怎樣的車速,才能使大橋上每小時通過的車輛最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知f(x)=在區(qū)間[-1,1]上是增函數(shù).
(Ⅰ)求實(shí)數(shù)a的值組成的集合A;
(Ⅱ)設(shè)關(guān)于x的方程f(x)=的兩個非零實(shí)根為x1、x2.試問:是否存在實(shí)數(shù)m,使得不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com