設(shè),,△的周長是,則的頂點的軌跡方程為___  ________
 

試題分析:|MN|=10,△的周長是即:|PM|+|PN|+|MN|=36,所以|PM|+|PN|=26>10,由橢圓的定義,知,的頂點的軌跡是橢圓,且2a=26,2c=10,所以b=12,故的頂點的軌跡方程為。
點評:基礎(chǔ)題,運用橢圓的定義,明確2a,2c,進一步求標準方程。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

方程2x2ky2=1表示的是焦點在y軸上的橢圓,則實數(shù)k的取值范圍是(    )
A.(0,+∞)B.(2,+∞)C.(0,2)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知,動點滿足:,則動點的軌跡為(     )
A.橢圓B.雙曲線C.拋物線D.線段

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓的中心是坐標原點,焦點在x軸上,離心率為,又橢圓上任一點到兩焦點的距離和為,過點M(0,)與x軸不垂直的直線交橢圓于P、Q兩點.
(1)求橢圓的方程;
(2)在y軸上是否存在定點N,使以PQ為直徑的圓恒過這個點?若存在,求出N的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

曲線與曲線的(   )
A.離心率相等B.焦距相等C.焦點相同D.準線相同

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知已知點(2,3)在雙曲線C:上,C的焦距為4,
則它的離心率為( )
A.2B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

方程所表示的曲線是(   )
A.雙曲線B.橢圓C.雙曲線的一部分D.橢圓的一部分

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分15分) 已知動圓過定點,且與直線相切,橢圓 的對稱軸為坐標軸,一個焦點是,點在橢圓上.
(Ⅰ)求動圓圓心的軌跡的方程及其橢圓的方程;
(Ⅱ)若動直線與軌跡處的切線平行,且直線與橢圓交于兩點,問:是否存在著這樣的直線使得的面積等于?如果存在,請求出直線的方程;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知點A,B是雙曲線上的兩點,O為原點,若,則點O到
直線AB的距離為     

查看答案和解析>>

同步練習冊答案