方程2
x2+
ky2=1表示的是焦點在
y軸上的橢圓,則實數(shù)
k的取值范圍是( )
A.(0,+∞) | B.(2,+∞) | C.(0,2) | D.(0,1) |
試題分析:∵方程2
x2+
ky2=1表示的是焦點在
y軸上的橢圓,∴
,∴0<k<2,故選C
點評:橢圓焦點位置的判斷只需判斷橢圓標準方程的分母的大小即可,應用時注意運算正確與否
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)
已知橢圓
的離心率為
,橢圓短軸長為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)已知動直線
與橢圓
相交于
、
兩點. ①若線段
中點的橫坐標為
,求斜率
的值;②若點
,求證:
為定值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)
已知橢圓
的離心率為
,橢圓C上任意一點到橢圓兩個焦點的距離之和為6。
(1)求橢圓C的方程;
(2)設直線
與橢圓C交于A、B兩點,點P(0,1),且|PA|=|PB|,求直線
的方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
頂點在原點,且過點
的拋物線的標準方程是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分10分) 已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為
,且過
,設點
.
(1)求該橢圓的標準方程;
(2)若
是橢圓上的動點,求線段
中點
的軌跡方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知拋物線
的頂點在坐標原點,它的準線經(jīng)過雙曲線
:
的左焦點
且垂直于
的兩個焦點所在的軸,若拋物線
與雙曲線
的一個交點是
.
(1)求拋物線
的方程及其焦點
的坐標;
(2)求雙曲線
的方程及其離心率
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設拋物線的頂點在原點,焦點與橢圓
的右焦點重合,則此拋物線的方程是( )
A.y2=-8x | B.y2=-4x | C.y2="8x" | D.y2=4x |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
設
,
,△
的周長是
,則
的頂點
的軌跡方程為___
________
查看答案和解析>>