如圖,AA1,BB1為圓柱OO1的母線,BC是底面圓O的直徑,D,E分別是AA1,CB1的中點,DE⊥面CBB1.

(1)證明:DE∥面ABC;
(2)求四棱錐C­ABB1A1與圓柱OO1的體積比.

(1)見解析   (2)

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)如圖,三棱柱中,側(cè)棱平面,為等腰直角三角形,,且分別是的中點.

(1)求證:平面;
(2)求證:平面;
(3)設,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知多面體中, 四邊形為矩形,,,平面平面, 分別為、的中點,且,.

(1)求證:平面;
(2)求證:平面
(3)設平面將幾何體分成的兩個錐體的體積分別為,,求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在體積為的圓錐中,已知的直徑,的中點,是弦的中點.

(1)指出二面角的平面角,并求出它的大小;
(2)求異面直線所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在邊長為4的菱形ABCD中,∠DAB=60°.點E、F分別在邊CDCB上,點E與點C、D不重合,EFAC,EFACO.沿EF將△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.

(1)求證:BD⊥平面POA;
(2)記三棱錐PABD的體積為V1,四棱錐PBDEF的體積為V2,求當PB取得最小值時V1V2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,底面,底面是平行四邊形,, 是 的中點。

(1)求證:;
(2)求證:;
(3)若,求二面角 的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在三棱柱ABC-A1B1C1中,C1C⊥底面ABC,AC=BC=CC1=2,AC⊥BC,點D是AB的中點.

(1)求證:AC1∥平面CDB1;
(2)求四面體B1C1CD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在三棱錐中,,,D為AC的中點,.

(1)求證:平面平面;
(2)如果三棱錐的體積為3,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

用一個平行于圓錐底面的平面截這個圓錐,截得圓臺上、下底面的面積之比為1∶16,截去的圓錐的母線長是3cm,求圓臺的母線長.

查看答案和解析>>

同步練習冊答案