7.若圓C1:x2+y2-2x=0與圓C2:(x+1)2+(y-2)2=r2(r>0)相切,則r等于2$\sqrt{2}$-1或2$\sqrt{2}$+1.

分析 求出兩個(gè)圓的圓心和半徑,根據(jù)兩圓相切的等價(jià)條件建立方程關(guān)系進(jìn)行求解即可.

解答 解:圓C1:x2+y2-2x=0,即(x-1)2+y2=1的圓心C1(1,0),半徑R=1,
圓C2:(x+1)2+(y-2)2=r2的圓心C2(-1,2),半徑為r,
則|C1C2|=$\sqrt{4+4}$=2$\sqrt{2}$,
若兩圓外切,則r+R=2$\sqrt{2}$,即r=2$\sqrt{2}$-1,
若兩圓內(nèi)切,則r-R=2$\sqrt{2}$,即r=2$\sqrt{2}$+1,
故答案為:2$\sqrt{2}$-1或2$\sqrt{2}$+1.

點(diǎn)評(píng) 本題主要考查圓與圓的位置關(guān)系的判斷,根據(jù)圓心之間的距離和兩圓半徑之間的關(guān)系是解決本題的關(guān)鍵.注意要進(jìn)行分類討論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)f(x)=x+$\frac{1}{2x}$,x∈($\frac{1}{2}$,2),若f(x)-m>0對(duì)一切x∈($\frac{1}{2}$,2)恒成立,則實(shí)數(shù)m的取值范圍為( 。
A.(-∞,$\frac{\sqrt{2}}{2}$)B.(-∞,$\sqrt{2}$)C.(-∞,$\frac{3}{2}$)D.($\frac{3}{2}$,$\frac{9}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)集合M={x|x2=x},N={x|1<2x<2},則M∪N=( 。
A.(-∞,2]B.(0,1]C.(0,2]D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若對(duì)于任意正數(shù)x,y,都有f(xy)=f(x)+f(y),且f(8)=-3,則$f(a)=\frac{1}{2}$時(shí),正數(shù)a=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列表格所示的五個(gè)散點(diǎn),原本數(shù)據(jù)完整,且利用最小二乘法求得這五個(gè)散點(diǎn)的線性回歸直線方程為$\stackrel{∧}{y}$=0.8x+155,后因某未知原因第5組數(shù)據(jù)的y值模糊不清,此位置數(shù)據(jù)記為m(如表所示),則利用回歸方程可求得實(shí)數(shù)m的值為( 。
x196197200203204
y1367m
A.8.3B.8.2C.8.1D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.直角坐標(biāo)系xoy中,已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}\right.$(t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2cos2θ=1.直線l與曲線C交于A,B兩點(diǎn).
(1)求|AB|的長(zhǎng);     
(2)若P點(diǎn)的極坐標(biāo)為(1,$\frac{π}{2}$),求AB中點(diǎn)M到P的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某校高三文科600名學(xué)生參加了12月的模擬考試,學(xué)校為了了解高三文科學(xué)生的數(shù)學(xué)、外語情況,利用隨機(jī)數(shù)表法從中抽取100名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì)分析,抽出的100名學(xué)生的數(shù)學(xué)、外語成績(jī)?nèi)绫恚?br />
外語
優(yōu)及格
數(shù)學(xué)優(yōu)8m9
9n11
及格8911
(Ⅰ)若數(shù)學(xué)成績(jī)優(yōu)秀率為35%,求m,n的值;
(Ⅱ)在外語成績(jī)?yōu)榱嫉膶W(xué)生中,已知m≥12,n≥10,求數(shù)學(xué)成績(jī)優(yōu)比良的人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知等差數(shù)列{an}滿足:a1+a4=4,a2•a3=3且{an}的前n項(xiàng)和為Sn.求an及Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知條件p:k=$-\sqrt{3}$;條件q:直線y=kx+2與圓x2+y2=1相切,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案