已知拋物線C1:y2=4x,雙曲線C2
x2
a2
-
y2
b2
=1(a>0,b>0),若C1的焦點(diǎn)恰為C2的右焦點(diǎn),則2a+b的最大值為
 
考點(diǎn):雙曲線的簡單性質(zhì)
專題:三角函數(shù)的圖像與性質(zhì),圓錐曲線的定義、性質(zhì)與方程
分析:求出拋物線的焦點(diǎn),可得雙曲線的c=1,a2+b2=1,令a=cosα,b=sinα(0<α<
π
2
),運(yùn)用兩角和的正弦公式,結(jié)合正弦函數(shù)的值域即可得到最大值.
解答: 解:拋物線C1:y2=4x的焦點(diǎn)為(1,0),
即有雙曲線的右焦點(diǎn)為(1,0),
即c=1,a2+b2=1,
令a=cosα,b=sinα(0<α<
π
2
),
則2a+b=2cosα+sinα=
5
2
5
cosα+
1
5
sinα)
=
5
sin(α+θ)(θ在第一象限,且tanθ=2),
當(dāng)α+θ=
π
2
時,sin(α+θ)取得最大值1,
即有2a+b取得最大值
5

故答案為:
5
點(diǎn)評:本題考查拋物線和雙曲線的方程和性質(zhì),同時考查三角換元和正弦函數(shù)的圖象和性質(zhì),運(yùn)用兩角和的正弦公式是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

為測量地面上B,C兩點(diǎn)間的距離,在高100m的建筑物頂部選點(diǎn)A,在A出測得點(diǎn)B,C的俯角分別為30°和45°(B,C與建筑物底部在同一水平面上),且∠BAC=45°,則B,C之間的距離為(  )
A、100m
B、100
2
m
C、100
3
m
D、200m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=-3x2+a(6-a)x+c(c>-6)
(1)若關(guān)于x的不等式f(x)>0的解集是(-1,3),求實(shí)數(shù) a,c的值.
(2)解關(guān)于a的不等式f(1)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
y2
a2
-
x2
b2
=1(a>0,b>0)的下焦點(diǎn)是F,點(diǎn)A,B分別是雙曲線的兩個虛軸端點(diǎn),且向量
FA
FB
的夾角θ的余弦值cosθ=
1
3
,則該雙曲線一條漸近線的傾斜角為( 。
A、30°B、60°
C、90°D、135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的前10項(xiàng)和S10=10,前20項(xiàng)和S20=30,求S30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=3x-3-x-2x,則滿足(x-2)f(log 
1
2
x)<0的x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
1
x
+ax+6,對任意實(shí)數(shù)x0∈[
1
2
,2],使不等式|f(x0)|≥
1
2
成立,則a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,b∈R+,e為自然數(shù)的底數(shù),則[
1
2
ea-ln(2b)]2+(a-b)2的最小值為( 。
A、(1-ln2)2
B、2(1-ln2)2
C、1+ln2
D、
2
(1-ln2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2+bx+c(b,c∈R).
(1)若f(-1)=f(2),且不等式x≤f(x)≤2|x-1|+1對x∈[0,2]恒成立,求函數(shù)f(x)的解析式;
(2)若c<0,且函數(shù)f(x)在[-1,1]上有兩個零點(diǎn),求2b+c的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案