分析 通過對(duì)an+1=2an+(3n-1)•3n+1(n∈N*)變形、構(gòu)成新數(shù)列{bn=$\frac{{a}_{n}}{{2}^{n}}$},從而利用累加法可求出當(dāng)n≥2時(shí)bn-b1的表達(dá)式,通過錯(cuò)位相減法計(jì)算可得bn的表達(dá)式,進(jìn)而可得結(jié)論.
解答 解:因?yàn)閍n+1=2an+(3n-1)•3n+1,(n∈N*),
所以$\frac{{a}_{n+1}}{{2}^{n+1}}$=$\frac{{a}_{n}}{{2}^{n}}$+(3n-1)•$({\frac{3}{2})}^{n+1}$,
記bn=$\frac{{a}_{n}}{{2}^{n}}$,則b1=$\frac{{a}_{1}}{2}$=-$\frac{1}{2}$,
bn+1-bn=(3n-1)•$({\frac{3}{2})}^{n+1}$,
bn-bn-1=[3(n-1)-1]•$(\frac{3}{2})^{n}$,
bn-1-bn-2=[3(n-2)-1]•$(\frac{3}{2})^{n-1}$,
…
b2-b1=(3•1-1)•$(\frac{3}{2})^{2}$,
累加得當(dāng)n≥2時(shí),bn-b1=[3(n-1)-1]•$(\frac{3}{2})^{n}$+[3(n-2)-1]•$(\frac{3}{2})^{n-1}$+…+(3•1-1)•$(\frac{3}{2})^{2}$,
$\frac{3}{2}$(bn-b1)=[3(n-1)-1]•$(\frac{3}{2})^{n+1}$+[3(n-2)-1]•$(\frac{3}{2})^{n}$+[3(n-3)-1]•$(\frac{3}{2})^{n-1}$+…+(3•1-1)•$(\frac{3}{2})^{3}$,
兩式相減,得:$-\frac{1}{2}$(bn-b1)=-[3(n-1)-1]•$(\frac{3}{2})^{n+1}$+3•[$(\frac{3}{2})^{n}$+$(\frac{3}{2})^{n-1}$+…+$(\frac{3}{2})^{3}$]+2•$(\frac{3}{2})^{2}$
=$\frac{9}{2}$+3•$\frac{(\frac{3}{2})^{3}[1-({\frac{3}{2})}^{n-2}]}{1-\frac{3}{2}}$-(3n-4)•$(\frac{3}{2})^{n+1}$
=$\frac{9}{2}$-6[$(\frac{3}{2})^{3}$-$(\frac{3}{2})^{n+1}$]-(3n-4)•$(\frac{3}{2})^{n+1}$
=-$\frac{63}{4}$-(3n-10)•$(\frac{3}{2})^{n+1}$,
所以bn-b1=$\frac{63}{2}$+(6n-20)•$(\frac{3}{2})^{n+1}$,
所以bn=b1+$\frac{63}{2}$+(6n-20)•$(\frac{3}{2})^{n+1}$=31+(6n-20)•$(\frac{3}{2})^{n+1}$(n≥2),
又因?yàn)閎1=$\frac{{a}_{1}}{2}$=-$\frac{1}{2}$滿足上式,
所以bn=$\frac{{a}_{n}}{{2}^{n}}$=31+(6n-20)•$(\frac{3}{2})^{n+1}$,
所以an=31•2n+(3n-10)•3n+1,
故答案為:31•2n+(3n-10)•3n+1.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,考查運(yùn)算求解能力,考查考查錯(cuò)位相減法,考查累加法,對(duì)表達(dá)式的靈活變形是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若向量$\overrightarrow{a}$∥$\overrightarrow$,則存在唯一的實(shí)數(shù)λ,使得$\overrightarrow{a}$=λ$\overrightarrow$ | |
B. | 已知隨機(jī)變量ξ服從正態(tài)分布N(1,σ2),若P(ξ≤4)=0.79,則P(ξ≤-2)=0.21 | |
C. | “φ=$\frac{3π}{2}$”是“y=sin(2x+φ)為偶函數(shù)”的充要條件 | |
D. | 函數(shù)y=f(1+x)與函數(shù)y=f(1-x)的圖象關(guān)于直線x=1對(duì)稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7 | B. | 14 | C. | 21 | D. | 28 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{8i}{5}$ | B. | $\frac{8i}{5}$ | C. | $-\frac{6}{5}$ | D. | $\frac{6}{5}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com