已知A、B、C是橢圓上的三點(diǎn),其中點(diǎn)A的坐標(biāo)為,BC過橢圓m的中心,且

(1)求橢圓的方程;

(2)過點(diǎn)的直線l(斜率存在時(shí))與橢圓m交于兩點(diǎn)P,Q,

設(shè)D為橢圓m與y軸負(fù)半軸的交點(diǎn),且,求實(shí)數(shù)t的取值范圍.

 

【答案】

(1)(2)t∈(-2,4)

【解析】本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,解題的關(guān)鍵是將 轉(zhuǎn)化為kDN•k=-1進(jìn)行求解.

(1)根據(jù)橢圓的性質(zhì)和向量的數(shù)量積為零得到a,b的值,得到橢圓的方程。

(2)設(shè)出直線與橢圓聯(lián)立方程組,然后結(jié)合根與系數(shù)的關(guān)系,和向量的等式得到參數(shù)的關(guān)系式,進(jìn)而利用判別式得到范圍。

解(1)∵過(0,0)

∴∠OCA=90°,  即  又∵

將C點(diǎn)坐標(biāo)代入得 

解得  c2=8,b2=4

∴橢圓m: 

(2)由條件D(0,-2)  ∵M(jìn)(0,t)

1°當(dāng)k=0時(shí),顯然-2<t<2 

2°當(dāng)k≠0時(shí),設(shè)

   消y得

由△>0  可得     ①

設(shè)

    

  

 

   ②

∴t>1  將①代入②得   1<t<4

∴t的范圍是(1,4)

綜上t∈(-2,4) 

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B、C是橢圓M:
x2
a2
+
y2
b2
=1(a>b>0)
上的三點(diǎn),其中點(diǎn)A的坐標(biāo)為(2
3
,0)
,BC過橢圓M的中心,且
AC
BC
=0,|
BC
|=2|
AC
|

(1)求橢圓M的方程;
(2)過點(diǎn)(0,t)的直線l(斜率存在時(shí))與橢圓M交于兩點(diǎn)P、Q,設(shè)D為橢圓M與y軸負(fù)半軸的交點(diǎn),且|
DP
|=|
DQ
|
,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知A,B,C是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
上的三點(diǎn),其中點(diǎn)A的坐標(biāo)為(2
3
,0),BC
過橢圓的中心O,且AC⊥BC,|BC|=2|AC|.
(Ⅰ)求點(diǎn)C的坐標(biāo)及橢圓E的方程;
(Ⅱ)若橢圓E上存在兩點(diǎn)P,Q,使得∠PCQ的平分線總是垂直于x軸,試判斷向量
PQ
AB
是否共線,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B,C是橢圓m:
x2
a2
+
y2
b2
=1(a>b>0)上的三點(diǎn),其中點(diǎn)A的坐標(biāo)為(2
3
,0),BC過橢圓m的中心,且
AC
BC
=0
,且|
BC
|=2|
AC
|.
(1)求橢圓m的方程;
(2)過點(diǎn)M(0,t)的直線l(斜率存在時(shí))與橢圓m交于兩點(diǎn)P,Q,設(shè)D為橢圓m與y軸負(fù)半軸的交點(diǎn),且|
DP
|=|
DQ
|.求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知A、B、C是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)上的三點(diǎn),,BC過橢圓的中心O,且AC⊥BC,|BC|=2|AC|.則橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•北京)已知A,B,C是橢圓W:
x24
+y2=1
上的三個(gè)點(diǎn),O是坐標(biāo)原點(diǎn).
(Ⅰ)當(dāng)點(diǎn)B是W的右頂點(diǎn),且四邊形OABC為菱形時(shí),求此菱形的面積;
(Ⅱ)當(dāng)點(diǎn)B不是W的頂點(diǎn)時(shí),判斷四邊形OABC是否可能為菱形,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案