11.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-y-2≤0}\\{x+2y-5≥0}\\{y-2≤0}\\{\;}\end{array}\right.$,則z=$\frac{y+1}{x+1}$的范圍是( 。
A.[$\frac{1}{3}$,2]B.B[-$\frac{1}{2}$,$\frac{1}{2}$]C.[$\frac{1}{2}$,$\frac{3}{2}$]D.[$\frac{3}{2}$,$\frac{5}{2}$]

分析 畫出滿足條件的平面區(qū)域,求出角點的坐標,根據z=$\frac{y+1}{x+1}$的幾何意義求出z的范圍即可.

解答 解:畫出滿足條件的平面區(qū)域,如圖示:

 由$\left\{\begin{array}{l}{y=2}\\{x+2y-5=0}\end{array}\right.$,解得A(1,2),
由$\left\{\begin{array}{l}{x-y-2=0}\\{x+2y-5=0}\end{array}\right.$,解得B(3,1),
而z=$\frac{y+1}{x+1}$的幾何意義表示過平面區(qū)域內的點與(-1,-1)的直線的斜率,
顯然直線AC斜率最大,直線BC斜率最小,
KAC=$\frac{2+1}{1+1}$=$\frac{3}{2}$,KBC=$\frac{1+1}{3+1}$=$\frac{1}{2}$,
故選:C.

點評 本題考查了簡單的線性規(guī)劃問題,考查思想結合思想,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

1.已知正方體ABCD-A1B1C1D1,點E為棱AA1的中點,則異面直線B1D1與DE所成角的大小是arccos$\frac{\sqrt{10}}{5}$(結果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知數(shù)列{an}滿足a1=1,an+1-2an=2n
(1)證明:數(shù)列{$\frac{{a}_{n}}{{2}^{n}}$}是等差數(shù)列,并求出{an}的通項公式;
(2)設bn=$\frac{(n+2){2}^{n-1}}{{a}_{n}{a}_{n+1}}$,{bn}的前n項和為Sn,求證:Sn<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.如圖,在△ABC中,已知$∠BAC=\frac{π}{3}$,AB=2,AC=4,點D為邊BC上一點,滿足$\overrightarrow{AC}$+2$\overrightarrow{AB}$=3$\overrightarrow{AD}$,點E是AD上一點,滿足$\overrightarrow{AE}$=2$\overrightarrow{ED}$,則BE=$\frac{2\sqrt{21}}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知集合M={y|y=2x,x>0},N={x|y=lgx},則M∩N為( 。
A.(0,+∞)B.(1,+∞)C.[2,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知集合M={x|x2-2x-8≤0},集合N={x|lgx≥0},則M∩N=( 。
A.{x|-2≤x≤4}B.{x|x≥1}C.{x|1≤x≤4}D.{x|x≥-2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設有關于x的一元二次方程x2+ax+b2=0.
(1)若a是從0,1,2,3四個數(shù)中任取的一個數(shù),b是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率;
(2)若a是從區(qū)間[0,3]任取的一個數(shù),b是從區(qū)間[0,2]任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.執(zhí)行如圖所示的程序框圖,輸出的結果是( 。
A.15B.21C.24D.35

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知等比數(shù)列{an}的前n項和Sn滿足:S3=39,且2a2是3a1與a3的等差中項.
(I)求數(shù)列{an}的通項an;
(Ⅱ)若數(shù)列{an}為遞增數(shù)列,bn=$\frac{1}{lo{g}_{3}{a}_{n}•lo{g}_{3}{a}_{n+2}}$,Tn=b1+b2+…+bn,問是否存在正整數(shù)n使得Tn$>\frac{1}{2}$成立?若存在,求出n的最小值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案