【題目】如圖,在△ABC中,∠C=90°,以BC上一點(diǎn)O為圓心,以O(shè)B為半徑的圓交AB于點(diǎn)M,交BC于點(diǎn)N.
(1)求證:BABM=BCBN;
(2)如果CM是⊙O的切線,N為OC的中點(diǎn),當(dāng)AC=3時(shí),求AB的值.
【答案】
(1)證明:連接MN,
則∠BMN=90°=∠ACB,
∴△ACB∽△NMB,
∴ ,
∴ABBM=BCBN
(2)解:連接OM,則∠OMC=90°,
∵N為OC中點(diǎn),
∴MN=ON=OM,
∴∠MON=60°,
∵OM=OB,
∴∠B= ∠MON=30°,
∵∠ACB=90°,
∴AB=2AC=2×3=6.
【解析】(1)連接MN,構(gòu)造一個(gè)直角三角形.即可把證明的線段放到兩個(gè)直角三角形中,根據(jù)相似三角形的判定和性質(zhì)進(jìn)行證明;(2)連接OM,根據(jù)切線的性質(zhì)得到直角△COM,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半,得到MN等于圓的半徑,從而發(fā)現(xiàn)等邊三角形OMN,再根據(jù)圓周角定理得到∠B=30°,根據(jù)30°所對(duì)的直角邊是斜邊的一半即可求得AB的長(zhǎng).
【考點(diǎn)精析】關(guān)于本題考查的一般形式的柯西不等式,需要了解一般形式的柯西不等式:才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= .
(1)用定義證明函數(shù)f(x)在(﹣∞,+∞)上為減函數(shù);
(2)若x∈[1,2],求函數(shù)f(x)的值域;
(3)若g(x)= ,且當(dāng)x∈[1,2]時(shí)g(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (b≠0且b是常數(shù)).
(1)如果方程f(x)=x有唯一解,求b值.
(2)在(1)的條件下,求證:f(x)在(﹣∞,﹣1)上是增函數(shù);
(3)若函數(shù)f(x)在(1,+∞)上是減函數(shù),求負(fù)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)試討論的單調(diào)性;
(2)證明:對(duì)于正數(shù),存在正數(shù),使得當(dāng)時(shí),有;
(3)設(shè)(1)中的的最大值為,求得最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù)z1滿足(z1﹣2)(1+i)=1﹣i(i為虛數(shù)單位),復(fù)數(shù)z2的虛部為2,且z1z2是實(shí)數(shù),
(1)求z1;
(2)求z2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小王于年初用50萬元購買一輛大貨車,第一年因繳納各種費(fèi)用需支出6萬元,從第二年起,每年都比上一年增加支出2萬元,假定該車每年的運(yùn)輸收入均為25萬元.小王在該車運(yùn)輸累計(jì)收入超過總支出后,考慮將大貨車作為二手車出售,若該車在第x年年底出售,其銷售價(jià)格為(25-x)萬元(國家規(guī)定大貨車的報(bào)廢年限為10年).
(1)大貨車運(yùn)輸?shù)降趲啄昴甑,該車運(yùn)輸累計(jì)收入超過總支出?
(2)在第幾年年底將大貨車出售,能使小王獲得的年平均利潤(rùn)最大?(利潤(rùn)=累計(jì)收入+銷售收入-總支出)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)y=ax在區(qū)間[0,2]上的最大值和最小值的和為5,則函數(shù)y=logax在區(qū)間[ ,2]上的最大值和最小值之差是( )
A.1
B.3
C.4
D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在10件產(chǎn)品中,有2件一等品,4件二等品,4件三等品,從這10件產(chǎn)品中任取3件,求
(1)取出的3件產(chǎn)品中一等品件數(shù)X的分布列和數(shù)學(xué)期望;
(2)取出的3件產(chǎn)品中至多有1件一等品的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為 (θ為參數(shù)),直線l經(jīng)過點(diǎn)P(1,1),傾斜角 ,
(1)寫出直線l的參數(shù)方程;
(2)設(shè)l與圓C相交于兩點(diǎn)A,B,求點(diǎn)P到A,B兩點(diǎn)的距離之積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com