【題目】已知橢圓的一個(gè)焦點(diǎn)為,左、右頂點(diǎn)分別為,經(jīng)過點(diǎn)且斜率為的直線與橢圓交于兩點(diǎn).
(1)求橢圓的方程;
(2)記與的面積分別為和,求關(guān)于的表達(dá)式,并求出當(dāng)為何值時(shí)有最大值.
【答案】(1) 橢圓的方程為;(2) 當(dāng)時(shí), 有最大值.
【解析】試題分析:
(1)由題意得,又,故可得,從而可得橢圓的方程.(2)由題意可設(shè)直線方程為,與橢圓的方程聯(lián)立消元后可得,由根與系數(shù)的關(guān)系可得.結(jié)合圖形可得=,代入后可得,最后根據(jù)基本不等式求最大值.
試題解析:
(1)∵橢圓的焦點(diǎn)為,
∴,
又,
∴,
∴橢圓的方程為.
(2)依題意知,設(shè)直線方程為,
由消去整理得
,
∵直線與橢圓交于C,D兩點(diǎn),
∴
且,
由題意得
,
∵,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,
∴當(dāng)時(shí), 有最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的奇函數(shù)f(x)滿足f(x+2)=-f(x),當(dāng)0≤x≤1時(shí),f(x)=x,
(1)試畫出f(x),x∈[-3,5]的圖象;
(2)求f(37.5);
(3)常數(shù)a∈(0,1),y=a與f(x),x∈[-3,5]的圖象相交,求所有交點(diǎn)橫坐標(biāo)之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】太原五中是一所有著百年歷史的名校,圖1是某一階段來我校參觀學(xué)習(xí)的外校人數(shù)統(tǒng)計(jì)莖葉圖,第1次到第14次參觀學(xué)習(xí)人數(shù)依次記為A1 , A2 , …,A14 , 圖2是統(tǒng)計(jì)莖葉圖中人數(shù)在一定范圍內(nèi)的一個(gè)算法流程圖,那么算法流程圖輸出的結(jié)果是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是梯形,AD∥BC,側(cè)面ABB1A1為菱形,∠DAB=∠DAA1 .
(1)求證:A1B⊥AD;
(2)若AD=AB=2BC,∠A1AB=60°,點(diǎn)D在平面ABB1A1上的射影恰為線段A1B的中點(diǎn),求平面DCC1D1與平面ABB1A1所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題方程表示焦點(diǎn)在軸上的橢圓;命題方程表示的曲線是雙曲線.
(1)若“”為真命題,求實(shí)數(shù)的取值范圍;
(2)若“”為假命題、且“”為真命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】貴陽與凱里兩地相距約200千米,一輛貨車從貴陽勻速行駛到凱里,規(guī)定速度不得超過100千米時(shí),已知貨車每小時(shí)的運(yùn)輸成本以元為單位由可變部分和固定部分組成:可變部分與速度千米時(shí)的平方成正比,比例系數(shù)為;固定部分為64元.
把全程運(yùn)輸成本元表示為速度千米時(shí)的函數(shù),并指出這個(gè)函數(shù)的定義域;
為了使全程運(yùn)輸成本最小,貨車應(yīng)以多大速度行駛?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且在和處取得極值.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)設(shè)函數(shù),是否存在實(shí)數(shù),使得曲線與軸有兩個(gè)交點(diǎn),若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (其中a>0且a≠1).
(1)求函數(shù)f(x)的奇偶性,并說明理由;
(2)若,當(dāng)x∈ 時(shí),不等式恒成立,求實(shí)數(shù)m的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】水葫蘆原產(chǎn)于巴西,年作為觀賞植物引入中國. 現(xiàn)在南方一些水域水葫蘆已泛濫成災(zāi)嚴(yán)重影響航道安全和水生動(dòng)物生長(zhǎng). 某科研團(tuán)隊(duì)在某水域放入一定量水葫蘆進(jìn)行研究,發(fā)現(xiàn)其蔓延速度越來越快,經(jīng)過個(gè)月其覆蓋面積為,經(jīng)過個(gè)月其覆蓋面積為. 現(xiàn)水葫蘆覆蓋面積(單位)與經(jīng)過時(shí)間個(gè)月的關(guān)系有兩個(gè)函數(shù)模型與可供選擇.
(參考數(shù)據(jù): )
(Ⅰ)試判斷哪個(gè)函數(shù)模型更合適,并求出該模型的解析式;
(Ⅱ)求原先投放的水葫蘆的面積并求約經(jīng)過幾個(gè)月該水域中水葫蘆面積是當(dāng)初投放的倍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com