2.已知圓C的圓心為(2,4),且圓C經(jīng)過點(diǎn)(0,4).
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)P(3,-1)作直線l與圓C相交于A,B兩點(diǎn),AB=2$\sqrt{3}$,求直線l的方程.

分析 (1)求出半徑,即可求出圓C的方程.
(2)由題知,圓心C到直線l的距離d=$\sqrt{4-3}$=1,當(dāng)l的斜率不存在時(shí),l:x=3成立;若l的斜率存在時(shí),設(shè)l:y+1=k(x-3),由d=1,求出k,由此能求出直線l的方程.

解答 解:(1)由題意,r=2,
∴圓C的標(biāo)準(zhǔn)方程為(x-2)2+(y-4)2=4;
(2)由題知,圓心C到直線l的距離d=$\sqrt{4-3}$=1
當(dāng)l的斜率不存在時(shí),l:x=3成立,
若l的斜率存在時(shí),設(shè)l:y+1=k(x-3),
由d=1,得$\frac{|k+5|}{\sqrt{{k}^{2}+1}}$=1,解得k=-$\frac{12}{5}$,
∴l(xiāng):12x+5y-31=0.
綜上,直線l的方程為x=3或12x+5y-31=0.

點(diǎn)評 本題考查圓的方程的求法,考查直線方程的求法,解題時(shí)要認(rèn)真審題,注意點(diǎn)到直線距離公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知向量$\overrightarrow{a}$=(sinx,2sinx),$\overrightarrow$=(2cosx,-sinx),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)y=f(x)在[-$\frac{π}{4}$,$\frac{3π}{8}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)P(x,y)是圓(x-3)2+y2=4上任一點(diǎn),則$\frac{y}{x}$的最小值是(  )
A.0B.-$\frac{2\sqrt{5}}{5}$C.-$\frac{\sqrt{5}}{5}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知a1,a2,…,an是由n(n∈N*)個(gè)整數(shù)1,2,…,n按任意次序排列而成的數(shù)列.?dāng)?shù)列{bn}滿足bk=n+1-ak(k=1,2,…,n),c1,c2,…,cn是1,2,…,n按從大到小的順序排列而成的數(shù)列,記Sn=c1+2c2+…+ncn
(1)證明:當(dāng)n為正偶數(shù)時(shí),不存在滿足ak=bk(k=1,2,…,n)的數(shù)列{an};
(2)寫出ck(k=1,2,…,n),并用含n的式子表示Sn
(3)利用(1-b12+(2-b22+…+(n-bn2≥0,證明:b1+2b2+…+nbn≤$\frac{1}{6}$n(n+1)(2n+1)及a1+2a2+…+nan≥Sn
(參考:12+22+…+n2=$\frac{1}{6}$n(n+1)(2n+1))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.圓C:x2+y2-6x-2y+1=0的周長是6π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若集合M={x|y=ln(x-1)},N={x|y=$\sqrt{2-x}$},則M∩N=( 。
A.{x|1<x≤2}B.{x|1≤x≤2}C.{x|x>1}D.{x|1≤x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)0<a<b,證明不等式$\frac{2a}{{a}^{2}+^{2}}$<$\frac{lnb-lna}{b-a}$<$\frac{1}{\sqrt{ab}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.等差數(shù)列{an}中,已知a1=1,a2+a3+a5=17.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{an}的前n項(xiàng)和為Sn,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.tan$\frac{π}{8}$的值是$\sqrt{2}-1$.

查看答案和解析>>

同步練習(xí)冊答案