6.如圖,四棱錐P-ABCD中,BC∥AD,BC=1,AD=2,AC⊥CD,且平面PCD⊥平面ABCD.
(1)求證:AC⊥PD;
(2)在線(xiàn)段PA上是否存在點(diǎn)E,使BE∥平面PCD?若存在,確定點(diǎn)E的位置,若不存在,請(qǐng)說(shuō)明理由.

分析 (1)利用面面垂直的性質(zhì)定理證明AC⊥平面PCD,即可證明AC⊥PD;
(2)當(dāng)點(diǎn)E是線(xiàn)段PA的中點(diǎn)時(shí),BE∥平面PCD.利用已知條件,得到四邊形BCFE為平行四邊形,再利用線(xiàn)面平行的判定定理即可證明.

解答 證明:(1)連接AC,
∵平面PCD⊥平面ABCD,平面PCD∩平面ABCD=CD,AC⊥CD,AC?平面ABCD,
∴AC⊥平面PCD,…(4分)
∵PD?平面PCD,所以AC⊥PD.…(5分)
(2)當(dāng)點(diǎn)E是線(xiàn)段PA的中點(diǎn)時(shí),BE∥平面PCD.…(6分)
證明如下:分別取AP,PD的中點(diǎn)E,F(xiàn),連接BE,EF,CF.則EF為△PAD的中位線(xiàn),
所以EF∥AD,且$EF=\frac{1}{2}AD=1$,
又BC∥AD,所以BC∥EF,且BC=EF,
所以四邊形BCFE是平行四邊形,所以BE∥CF,…(10分)
又因?yàn)锽E?平面PCD,CF?平面PCD
所以BE∥平面PCD.…(12分)

點(diǎn)評(píng) 熟練掌握面面垂直的性質(zhì)定理、平行線(xiàn)分線(xiàn)段成比例定理在三角形中的應(yīng)用、平行四邊形的判定和性質(zhì)定理、線(xiàn)面平行的判定定理是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知函數(shù)f(x)定義域?yàn)镽,若存在常數(shù)f(x),使$|f(x)|≤\frac{k}{2017}|x|$對(duì)所有實(shí)數(shù)都成立,則稱(chēng)函數(shù)f(x)為“期望函數(shù)”,給出下列函數(shù):
①f(x)=x2②f(x)=xex③$f(x)=\frac{x}{{{x^2}-x+1}}$④$f(x)=\frac{x}{{{e^x}+1}}$
其中函數(shù)f(x)為“期望函數(shù)”的是③④.(寫(xiě)出所有正確選項(xiàng)的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.男隊(duì)有號(hào)碼1,2,3的三名乒乓球運(yùn)動(dòng)員,女隊(duì)有號(hào)碼為1,2,3,4的四名乒乓球運(yùn)動(dòng)員,現(xiàn)兩隊(duì)各出一名運(yùn)動(dòng)員比賽一場(chǎng),則出場(chǎng)的兩名運(yùn)動(dòng)員號(hào)碼不同的概率為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若直線(xiàn)l1:(k-3)x+(k+4)y+1=0與l2:(k+1)x+2(k-3)y+3=0垂直,則實(shí)數(shù)k的值是( 。
A.3或-3B.3或4C.-3或-1D.-1或4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知直線(xiàn)3x+4y-5=0與直線(xiàn)6x+my+14=0平行,則它們之間的距離是$\frac{12}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.如圖,網(wǎng)格紙上小正方形邊長(zhǎng)為1,粗實(shí)線(xiàn)畫(huà)出的是一個(gè)幾何體的三視圖,則該幾何體體積為( 。
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{4π}{3}$D.$\frac{16π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知直線(xiàn)x=-2交橢圓$\frac{x^2}{25}+\frac{y^2}{21}=1$于A、B兩點(diǎn),橢圓的右焦點(diǎn)為F點(diǎn),則△ABF的周長(zhǎng)為20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,四棱錐P-ABCD,底面ABCD為矩形,AB=PA=$\sqrt{3}$,AD=2,PB=$\sqrt{6}$,E為PB中點(diǎn),且AE⊥PC.
(1)求證:PA⊥平面ABCD;
(2)線(xiàn)段BC上是否存在點(diǎn)M使得二面角P-MD-A的大小為60°?若存在,求出BM的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖是某幾何體的三視圖,其正視圖,側(cè)視圖均為直徑為2的半圓,俯視圖是直徑為2的圓,則該幾何體的表面積為(  )
A.B.C.D.12π

查看答案和解析>>

同步練習(xí)冊(cè)答案