將1,2,3,…,n這n個數(shù)隨機排成一列,得到的一列數(shù)a1,a2,…,an稱為1,2,3,…,n的一個排列.定義為排列a1,a2,…,an的波動強度.

(Ⅰ)當n=3時,寫出排列a1,a2,a3的所有可能情況及所對應的波動強度;

(Ⅱ)當n=10時,求的最大值,并指出所對應的一個排列.

答案:
解析:

  解:(Ⅰ)時,排列的所有可能為;;;;

  ;;

  ;

  (Ⅱ)

  上式轉化為

  在上述中,有個選正號,個選負號,其中出現(xiàn)一次,各出現(xiàn)兩次.

  所以可以表示為個數(shù)的和減去個數(shù)的和的形式,

  若使最大,應使第一個和最大,第二個和最。

  所以最大為:

  


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給出下面的數(shù)表序列:
表1 表2 表3
1 1   3 1   3   5
4 4   8
12
其中表n(n=1,2,3,…)有n行,第1行的n個數(shù)是1,3,5,…,2n-1,從第2行起,每行中的每個數(shù)都等于它肩上的兩數(shù)之和.
(1)寫出表4,驗證表4各行中數(shù)的平均數(shù)按從上到下的順序構成等比數(shù)列,并將結論推廣到表n(n≥3)(不要求證明);
(2)每個數(shù)表中最后一行都只有一個數(shù),它們構成數(shù)列1,4,12,…,記此數(shù)列為{bn},求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

約瑟夫規(guī)則:將1,2,3,…,n按逆時針方向依次放置在一個單位圓上,然后從1開始,按逆時針方向,隔一個刪除一個數(shù),直至剩余一個數(shù)而終止,依次刪除的數(shù)為1,3,5,7,….當n=65時,剩余的一個數(shù)為
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•西城區(qū)一模)將1,2,3,…,n這n個數(shù)隨機排成一列,得到的一列數(shù)a1,a2,…,an稱為1,2,3,…,n的一個排列;定義τ(a1,a2,…,an)=|a1-a2|+|a2-a3|+…|an-1-an|為排列a1,a2,…,an的波動強度.
(Ⅰ)當n=3時,寫出排列a1,a2,a3的所有可能情況及所對應的波動強度;
(Ⅱ)當n=10時,求τ(a1,a2,…,a10)的最大值,并指出所對應的一個排列;
(Ⅲ)當n=10時,在一個排列中交換相鄰兩數(shù)的位置稱為一次調(diào)整,若要求每次調(diào)整時波動強度不增加,問對任意排列a1,a2,…,a10,是否一定可以經(jīng)過有限次調(diào)整使其波動強度降為9;若可以,給出調(diào)整方案,若不可以,請給出反例并加以說明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給定大于2004的正整數(shù)n,將1、2、3、…、分別填入n×n棋盤(由n行n列方格構成)的方格中,使每個方格恰有一個數(shù)。如果一個方格中填的數(shù)大于它所在行至少2004個方格內(nèi)所填的數(shù),且大于它所在列至少2004個方格內(nèi)所填的數(shù),則稱這個方格為“優(yōu)格”。求棋盤中“優(yōu)格”個數(shù)的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源:2011年北京市西城區(qū)高考數(shù)學一模試卷(文科)(解析版) 題型:解答題

將1,2,3,…,n這n個數(shù)隨機排成一列,得到的一列數(shù)a1,a2,…,an稱為1,2,3,…,n的一個排列;定義τ(a1,a2,…,an)=|a1-a2|+|a2-a3|+…|an-1-an|為排列a1,a2,…,an的波動強度.
(Ⅰ)當n=3時,寫出排列a1,a2,a3的所有可能情況及所對應的波動強度;
(Ⅱ)當n=10時,求τ(a1,a2,…,a10)的最大值,并指出所對應的一個排列;
(Ⅲ)當n=10時,在一個排列中交換相鄰兩數(shù)的位置稱為一次調(diào)整,若要求每次調(diào)整時波動強度不增加,問對任意排列a1,a2,…,a10,是否一定可以經(jīng)過有限次調(diào)整使其波動強度降為9;若可以,給出調(diào)整方案,若不可以,請給出反例并加以說明.

查看答案和解析>>

同步練習冊答案