.已知點C(1,0),點A、B是⊙O:上任意兩個不同的點,且滿足

,設(shè)P為弦AB的中點.(1)求點P的軌跡T的方程;(2)試探究在軌跡T上

是否存在這樣的點:它到直線的距離恰好等于到點C的距離?若存在,求出這樣的

點的坐標(biāo);若不存在,說明理由.

 

 

 

 

 

 

【答案】

解:(1)連結(jié)CP,由,知AC⊥BC

∴|CP|=|AP|=|BP|=,由垂徑定理知

    設(shè)點P(x,y),有

化簡,得到   

(2)根據(jù)拋物線的定義,到直線的距離等于到點C(1,0)的距離的點都在拋物線

 

上,其中,∴,故拋物線方程為    

由方程組,解得 

,故,此時; 故滿足條件的點存在的,其坐標(biāo)為 

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知點C(1,0),點A、B是⊙O:x2+y2=9上任意兩個不同的點,且滿足
AC
BC
=0
,設(shè)P為弦AB的中點,
(1)求點P的軌跡T的方程;
(2)試探究在軌跡T上是否存在這樣的點:它到直線x=-1的距離恰好等于到點C的距離?若存在,求出這樣的點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆廣東省惠州市高三第一次調(diào)研考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分14分)
已知點C(1,0),點A、B是⊙O:上任意兩個不同的點,且滿足,設(shè)P為弦AB的中點.
(1)求點P的軌跡T的方程;
(2)試探究在軌跡T上是否存在這樣的點:它到直線的距離恰好等于到點C的距離?若存在,求出這樣的點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省惠州市高三第一次調(diào)研考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分14分)

已知點C(1,0),點A、B是⊙O:上任意兩個不同的點,且滿足,設(shè)P為弦AB的中點.

(1)求點P的軌跡T的方程;

(2)試探究在軌跡T上是否存在這樣的點:它到直線的距離恰好等于到點C的距離?若存在,求出這樣的點的坐標(biāo);若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:專項題 題型:解答題

已知點C(1,0),點A,B是⊙O:x2+y2=9上任意兩個不同的點,且滿足,設(shè)P為弦AB的中點。
(1)求點P的軌跡T的方程;
(2)試探究在軌跡T上是否存在這樣的點:它到直線x=-1的距離恰好等于到點C的距離?若存在,求出這樣的點的坐標(biāo);若不存在,說明理由。

查看答案和解析>>

同步練習(xí)冊答案