在等差數(shù)列{an} 中,Sn是它的前n項的和,若a1>0,S16>0,S17<0,則當n=
8
8
時,Sn最大.
分析:根據(jù)所給的等差數(shù)列的S16>0且S17<0,根據(jù)等差數(shù)列的前n項和公式,看出第九項小于0,第八項和第九項的和大于0,得到第八項大于0,這樣前8項的和最大.
解答:解:∵等差數(shù)列{an}中,S16>0且S17<0
∴a8+a9>0,并且a9<0,
∴a8>0,
∴數(shù)列的前8項和最大
故答案為8.
點評:本題考查等差數(shù)列的性質(zhì)和前n項和,本題解題的關鍵是看出所給的數(shù)列的項的正負,本題是一個基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,若S2≥4,S3≤9,則a4的最大值為
7
7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

A組:在等差數(shù)列{an},前n項和為Sn,a2=0,S5=10,求an及Sn
B組:在等差數(shù)列{an},前n項和為Sn,a2=0,S5=10,
(1)求通項公式an; 
(2)若bn=3an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,a2+a3=7,a4+a5+a6=18.
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{an}的前n項和為Sn,求
1
S3
+
1
S6
+…+
1
S3n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中前n項和為Sn,且S2011=-2011,a1007=1,則a2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•武漢模擬)在等差數(shù)列{an}中,若a3+a6+a9+a12+a15=120,則a10-
1
3
a12
的值為( 。

查看答案和解析>>

同步練習冊答案