設P為y=
1
4
x2-2圖象C上任意一點,l為C在點P處的切線,則坐標原點O到l距離的最小值為
 
考點:利用導數(shù)研究曲線上某點切線方程
專題:導數(shù)的綜合應用
分析:設出切點P坐標,由導數(shù)求得C在點P處的切線方程,由點到直線的距離公式寫出坐標原點O到l距離,再由基本不等式求最小值.
解答: 解:設P(x0,
1
4
x02-2
),
由y=
1
4
x2-2,得y=
1
2
x

y|x=x0=
1
2
x0
,
則C在點P處的切線方程為:y-
1
4
x02+2=
1
2
x0(x-x0)

整理得:2x0x-4y-x02-8=0
∴坐標原點O到l距離d=
|-x02-8|
4x02+16
=
1
2
x02+8
x02+4
=
1
2
x02+4+4
x02+4

=
1
2
(
x02+4
+
4
x02+4
)≥2

當且僅當
x02+4
=
4
x2+4
,即x0=0時上式等號成立.
∴坐標原點O到l距離的最小值為2.
故答案為:2.
點評:本題考查了利用導數(shù)研究曲線上某點處的切線方程,考查了點到直線的距離公式,訓練了利用基本不等式求最值,是中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知sinα+cosα=-
1
3
,0<α<180°.
(1)求sinαcosα的值;
(2)求sinα-cosα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一圓的圓心P在直線y=x上,且該圓與直線x+2y-1=0相切,截y軸所得弦長為2,求此圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-x-
x

(Ⅰ)判斷
f(x)
x
的單調(diào)性;
(Ⅱ)求函數(shù)y=f(x)的零點的個數(shù);
(Ⅲ)令g(x)=
ax2+ax
f(x)+
x
+lnx,若函數(shù)y=g(x)在(0,
1
e
)內(nèi)有極值,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log2
x+1
x-1
,g(x)=log2(x-1)
(1)判斷f(x)在區(qū)間(1,+∞)上的單調(diào)性,并用定義證明;
(2)記函數(shù)h(x)=g(2x+2)+kx,問:是否存在實數(shù)k使得函數(shù)h(x)為偶函數(shù)?若存在,請求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=loga(x-3)-1的圖象恒過與a無關的定點
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

全集U={(x,y)|x∈R,y∈R},A={(x,y)|y-
1
x
+1=1},B={(x,y)|y=x+2},則B∩∁UA=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①如果函數(shù)f(x)對任意的x∈R,都有f(a+x)=f(a-x)(a為一個常數(shù)),那么函數(shù)f(x)必為偶函數(shù);
②如果函數(shù)f(x)對任意的x∈R,滿足f(2+x)=-f(x),那么函數(shù)f(x)是周期函數(shù);
③如果函數(shù)f(x)對任意的x1,x2∈R,且x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0,那么函數(shù)f(x)在R上是減函數(shù); 
④通過平移函數(shù)y=lgx的圖象和函數(shù)y=lg
x+3
10
的圖象能重合.
其中真命題的序號
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=2(m+1)x2-1與函數(shù)g(x)=4mx-2m有兩個交點,則m的取值范圍是
 

查看答案和解析>>

同步練習冊答案