已知拋物線的焦點為F,準線為l,點P為拋物線上一點,且,垂足為A,若直線AF的斜率為,則|PF|等于( )
A.B.4C.D.8
B

試題分析:根據(jù)題意畫出圖象,連接AF,因為P為拋物線上一點,所以,因為直線AF的斜率為,所以是等邊三角形,而焦點到準線的距離為2,所以,所以
點評:拋物線上的點到焦點的距離等于到準線的距離這一性質(zhì)的應(yīng)用是解決此題的關(guān)鍵,解決與圓錐曲線有關(guān)的問題時,要善于畫圖,數(shù)形結(jié)合解決問題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題

若關(guān)于的方程的三個根可分別作為一個橢圓、雙曲線、拋物線的離心率,則的取值范圍為         . 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓C中心在原點,焦點在軸上,一條經(jīng)過點且傾斜角余弦值為的直線交橢圓于A,B兩點,交軸于M點,又.
(1)求直線的方程;
(2)求橢圓C長軸的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知對稱軸為坐標軸的雙曲線的漸近線方程為,若雙曲線上有一點M(),使,那雙曲線的交點(     )。
A.在軸上
B.在軸上
C.當時在軸上
D.當時在軸上

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知直線與雙曲線的一條漸近線平行,則這兩條平行直線之間的距離是           

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知焦點在軸上的橢圓過點,且離心率為,為橢圓的左頂點.
(1)求橢圓的標準方程;
(2)已知過點的直線與橢圓交于兩點.
① 若直線垂直于軸,求的大小;
② 若直線軸不垂直,是否存在直線使得為等腰三角形?如果存在,求出直線的方程;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C=1(a>b>0)的一個焦點是F(1,0),且離心率為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)經(jīng)過點F的直線交橢圓CM,N兩點,線段MN的垂直平分線交y軸于點P(0,y0),求y0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓)的一個頂點為,離心率為,直線與橢圓交于不同的兩點.(1) 求橢圓的方程;(2) 當的面積為時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點P(4,4),圓C:與橢圓E:有一個公共點A(3,1),F(xiàn)1、F2分別是橢圓的左、右焦點,直線PF1與圓C相切.

(1)求m的值與橢圓E的方程;
(2)設(shè)Q為橢圓E上的一個動點,求的取值范圍.

查看答案和解析>>

同步練習冊答案