已知橢圓
(
)的一個頂點為
,離心率為
,直線
與橢圓
交于不同的兩點
、
.(1) 求橢圓
的方程;(2) 當
的面積為
時,求
的值.
(1)
; (2)
.
試題分析:(1)易知橢圓的焦點在x軸上,因為橢圓的一個頂點為
,所以a=2,又因為離心率為
,所以c=
,所以
,所以橢圓的方程為
。
(2)設
,聯(lián)立直線方程和橢圓方程
點A到直線
的距離為
,
所以
,解得
。
點評:本題主要考查橢圓方程的求法和弦長的運算,解題時要注意橢圓性質(zhì)的靈活運用和弦長公式的合理運用。在求直線與圓錐曲線相交的弦長時一般采用韋達定理設而不求的方法,在求解過程中一般采取步驟為:設點→聯(lián)立方程→消元→韋達定理→弦長公式。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:填空題
已知雙曲線
的一條漸近線與直線
垂直,則曲線的離心率等于
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知拋物線
的焦點為
F,準線為
l,點
P為拋物線上一點,且
,垂足為
A,若直線
AF的斜率為
,則|
PF|等于( )
A. | B.4 | C. | D.8 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知雙曲線
的兩個焦點分別為
、
,則滿足△
的周長為
的動點
的軌跡方程為 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知點
是拋物線
上的動點,點
在
軸上的射影是
,
,則
的最小值是
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
直線
被曲線
截得的弦長為
;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知拋物線的頂點在原點,它的準線過雙曲線
的一個焦點,并與雙曲線的實軸垂直,已知拋物線與雙曲線的交點為
.
(1)求拋物線的方程;
(2)求雙曲線的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
求過兩直線
和
的交點,且滿足下列條件的直線
的方程.
(Ⅰ)和直線
垂直;
(Ⅱ)在
軸,
軸上的截距相等.
查看答案和解析>>