14.已知函數(shù)f(x)是奇函數(shù),當(dāng)x<0時(shí),f(x)=-x2+x,若不等式f(x)-x≤2logax(a>0且a≠1)對?x∈(0,$\frac{\sqrt{2}}{2}$]恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.(0,$\frac{1}{4}$]B.[$\frac{1}{4}$,1)C.(0,$\frac{1}{2}$]D.[$\frac{1}{4}$,$\frac{1}{2}$]∪(1,+∞)

分析 先求出f(x)在x>0的解析式,不等式f(x)-x≤2logax(a>0,a≠1)對?x∈(0,$\frac{\sqrt{2}}{2}$]恒成立,轉(zhuǎn)化為loga $\sqrt{a}$≤loga $\frac{1}{2}$,分類討論即可.

解答 解:函數(shù)f(x)是奇函數(shù),當(dāng)x<0,f(x)=-x2+x
∴f(-x)=-f(x),
設(shè)x>0,則-x<0,
∴f(-x)=-x2-x,
∴f(x)=x2+x,
∵不等式f(x)-x≤2logax(a>0,a≠1)對?x∈(0,$\frac{\sqrt{2}}{2}$]恒成立,
∴x2+x-x≤2logax(a>0,a≠1)對?x∈(0,$\frac{\sqrt{2}}{2}$]恒成立,
∴x2≤logax2
∴($\frac{\sqrt{2}}{2}$)2≤loga($\frac{\sqrt{2}}{2}$)2,
∴l(xiāng)oga$\sqrt{a}$=$\frac{1}{2}$≤loga$\frac{1}{2}$,
當(dāng)a>1時(shí),$\sqrt{a}$≤$\frac{1}{2}$,解得a≤$\frac{1}{4}$,此時(shí)無解,
當(dāng)0<a<1時(shí),$\sqrt{a}$≥$\frac{1}{2}$,解得a≥$\frac{1}{4}$,此時(shí)$\frac{1}{4}$≤a<1,
綜上所述a的取值范圍為[$\frac{1}{4}$,1).
故選:B.

點(diǎn)評 本題是恒成立問題,通過研究函數(shù)的單調(diào)性,借助于最值求出參數(shù)的范圍.考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=lnx-2ax+1(a∈R)
(Ⅰ)討論函數(shù)g(x)=x2+f(x)的單調(diào)性;
(Ⅱ)若a=$\frac{1}{2}$,證明:|f(x)-1|>$\frac{lnx}{x}$+$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.橢圓$\frac{x^2}{3}+\frac{y^2}{2}=1$上一點(diǎn)P到左焦點(diǎn)的距離為$\frac{{\sqrt{3}}}{2}$,則P到右準(zhǔn)線的距離為( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{5\sqrt{5}}{10}$C.$\frac{9}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.$\frac{{2cos{{10}°}-sin{{20}°}}}{{cos{{20}°}}}$=( 。
A.$\frac{1}{2}$B.1C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知定點(diǎn)M(2,0),若過點(diǎn)M的直線l(斜率不為零)與橢圓$\frac{{x}^{2}}{3}$+y2=1交于不同的兩點(diǎn)E,F(xiàn)(E在點(diǎn)M,F(xiàn)之間),記λ=$\frac{{S}_{△OME}}{{S}_{△OMF}}$,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在區(qū)間[0,π]上隨機(jī)取一個(gè)數(shù)x,使sinx≥$\frac{\sqrt{3}}{2}$成立的概率$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知三角形ABC中,B(-1,0),C(1,0),且|AB|+|AC|=4.
(Ⅰ)求動(dòng)點(diǎn)A的軌跡M的方程;
(Ⅱ)P為軌跡M上動(dòng)點(diǎn),△PBC的內(nèi)切圓面積為S1,外接圓面積為S2,當(dāng)P在M上運(yùn)動(dòng)時(shí),求$\frac{S_2}{S_1}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x+y-1≤0}\\{x-y≤0}\\{x≥0}\end{array}\right.$,則2x-y的最大值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)θ為鈍角,若sin(θ+$\frac{π}{3}$)=-$\frac{3}{5}$,則cosθ的值為$\frac{-4-3\sqrt{3}}{10}$.

查看答案和解析>>

同步練習(xí)冊答案