【題目】已知各項均為正數(shù)的數(shù)列{an}的前n項和Sn>1,且6Sn=(an+1)(an+2),n∈N*
(1)求{an}的通項公式;
(2)若數(shù)列{bn}滿足bn= ,求{bn}的前n項和.

【答案】
(1)解:∵6Sn=(an+1)(an+2),

∴6Sn+1=(an+1+1)(an+1+2),

∴(an+an1)(an﹣an1﹣3)=0,

∵an>0,

∴an﹣an1=3,

∴{an}為等差數(shù)列

∵6S1=(a1+1)(a1+2),

∵a1>1,

∴a1=2,

∴an=3n﹣1


(2)解:bn= = = ),

∴{bn}的前n項和為 )=


【解析】(1)由6Sn=(an+1)(an+2)得到6Sn+1=(an+1+1)(an+1+2),兩式作差,即可證明{an}為等差數(shù)列,從而求出an . (2)由an=3n﹣1,推導(dǎo)出bn= ),由此利用裂項求和法能求出數(shù)列{bn}的前n.
【考點精析】根據(jù)題目的已知條件,利用數(shù)列的前n項和和數(shù)列的通項公式的相關(guān)知識可以得到問題的答案,需要掌握數(shù)列{an}的前n項和sn與通項an的關(guān)系;如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了讓學(xué)生更多地了解“數(shù)學(xué)史”知識,某班級舉辦一次“追尋先哲的足跡,傾聽數(shù)學(xué)的聲音的數(shù)學(xué)史知識競賽活動.現(xiàn)將初賽答卷成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計,制成如下頻率分布表:

序號

分?jǐn)?shù)段

人數(shù)

頻率

1

10

0.20

2

0.44

3

4

4

0.08

合計

50

1

(1)填充上述表中的空格(在解答中直接寫出對應(yīng)空格序號的答案);

(2)若利用組中值近似計算數(shù)據(jù)的平均數(shù),求此次數(shù)學(xué)史初賽的平均成績;

(3)甲同學(xué)的初賽成績在,學(xué)校為了宣傳班級的學(xué)習(xí)經(jīng)驗,隨機抽取分?jǐn)?shù)在的4位同學(xué)中的兩位同學(xué)到學(xué)校其他班級介紹,求甲同學(xué)被抽取到的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的圓心在直線上,且圓經(jīng)過點.

(1)求圓的標(biāo)準(zhǔn)方程;

(2)直線過點且與圓相交,所得弦長為4,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為減少空氣污染,某市鼓勵居民用電(減少燃氣或燃煤),采用分段計費的方法計算電費每月用電不超過100度仍按原標(biāo)準(zhǔn)收費,超過的部分每度按0.5元計算.

Ⅰ.設(shè)月用電x度時,應(yīng)交電費y元,寫出y關(guān)于x的函數(shù)關(guān)系式;

Ⅱ.小明家第一季度繳納電費情況如下:

月份

一月

二月

三月

合計

繳費金額

76

63

45.6

184.6

問小明家第一季度共用多少度?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的偶函數(shù),當(dāng)時,.

Ⅰ.寫出上的解析式;

Ⅱ.求出上的最大值;

Ⅲ.上的增函數(shù),求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)定義域為,若對于任意的,都有,且時,有.

(1)判斷并證明函數(shù)的奇偶性;

(2)判斷并證明函數(shù)的單調(diào)性;

(3)設(shè),若,對所有,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l:y=﹣x+1與橢圓C: =1(a>b>0))相交于不同的兩點A、B,且線段AB的中點P的坐標(biāo)為( ,

(1)求橢圓C離心率;
(2)設(shè)O為坐標(biāo)原點,且2|OP|=|AB|,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)

(1)函數(shù)在區(qū)間[﹣1,1]上的最小值記為,求的解析式;

(2)求(1)中的最大值;

(3)若函數(shù)[2,4]上是單調(diào)增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)f(x),滿足當(dāng)x>0時,f(x)>1,且對任意的x,y,有,

(1)的值;

(2)求證:對任意x,都有f(x)>0;

(3)解不等式f(32x)>4.

查看答案和解析>>

同步練習(xí)冊答案