分析 根據(jù)題意求出f(x)的解析式,再判斷出函數(shù)的單調(diào)性,即可得到答案.
解答 解:由a⊙b=$\left\{\begin{array}{l}{b,a≥b}\\{a,a<b}\end{array}\right.$,
得,f(x)=x?(2-x)=$\left\{\begin{array}{l}{2-x,x≥1}\\{x,x<1}\end{array}\right.$,
∴f(x)在(-∞,1)上是增函數(shù),在[1,+∞)上是減函數(shù),
∴f(x)≤1,
故答案為:1.
點評 本題考查分段函數(shù)的值域,即每段值域的并集,也是一個新定義運算問題:取兩者中較小的一個,求出函數(shù)的解析式并判斷出其單調(diào)性是解題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{7}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{3}{2}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k1<k2<k3 | B. | k2<k1<k3 | C. | k3<k2<k1 | D. | k1<k3<k2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2015}{2016}$ | B. | $\frac{2015}{1008}$ | C. | $\frac{2015}{672}$ | D. | $\frac{2015}{336}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | -1 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com