【題目】某校設(shè)計(jì)了一個(gè)實(shí)驗(yàn)考察方案:考生從6道備選題中隨機(jī)抽取3道題,按照題目要求獨(dú)立完成全部實(shí)驗(yàn)操作,規(guī)定:至少正確完成其中的2道題便可通過(guò).己知6道備選題中考生甲有4道能正確完成,2道題不能完成;考生乙每題正確完成的概率都是 ,且每題正確完成與否互不影響.
(I) 求甲考生通過(guò)的概率;
(II) 求甲、乙兩考生正確完成題數(shù)的概率分布列,和甲、乙兩考生的數(shù)學(xué)期望;
(Ⅲ)請(qǐng)分析比較甲、乙兩考生的實(shí)驗(yàn)操作能力.
【答案】解:(Ⅰ)∵考生從6道備選題中隨機(jī)抽取3道題,按照題目要求獨(dú)立完成全部實(shí)驗(yàn)操作, 規(guī)定:至少正確完成其中的2道題便可通過(guò).
己知6道備選題中考生甲有4道能正確完成,2道題不能完成,
∴甲考生通過(guò)的概率P=1﹣ = .
(Ⅱ)由題意知甲考生正確完成題數(shù)X的可能取值為1,2,3,
P(X=1)= = ,
P(X=2)= = ,
P(X=3)= = ,
∴X的可能取值為:
X | 1 | 2 | 3 |
P |
EX= +2× +3× = .
乙兩考生正確完成題數(shù)Y的可能取值為0,1,2,3,
P(Y=0)= ( )3= ,
P(Y=1)= = ,
P(Y=2)= = ,
P(Y=3)= = ,
∴Y的分布列是:
Y | 0 | 1 | 2 | 3 |
P |
EY= =2.
(Ⅲ)DX=(1﹣2)2× +(2﹣2)2× +(3﹣2)2× = ,
∵Y∽B(3, ),∴DY=3× =
∴DX<DY,
∵P(X≥2)= ,P(Y≥2)= ≈0.74
∴P(X≥2)>P(Y≥2)
①?gòu)淖鰧?duì)題數(shù)的數(shù)學(xué)期望考查,兩人水平相當(dāng);從做對(duì)題數(shù)的方差考查,甲較穩(wěn)定;
②從至少完成2題的概率考查,甲獲得通過(guò)的可能性大,
因此,可以判斷甲的實(shí)驗(yàn)操作能力強(qiáng)
【解析】(Ⅰ)考生甲要通過(guò)實(shí)驗(yàn)考查,必須正確完成至少2道,利用對(duì)立事件概率計(jì)算公式能求出甲考生通過(guò)的概率.(Ⅱ)確定考生甲正確完成實(shí)驗(yàn)操作的題目個(gè)數(shù)的取值,求出相應(yīng)的概率,可得考生甲正確完成題目個(gè)數(shù)ξ的分布列和數(shù)學(xué)期望;乙兩考生正確完成題數(shù)Y的可能取值為0,1,2,3,且Y~B(3, ),由此能求出考生乙正確完成題目個(gè)數(shù)ξ的分布列和數(shù)學(xué)期望.(Ⅲ)設(shè)考生乙正確完成實(shí)驗(yàn)操作的題目個(gè)數(shù)為η,求出相應(yīng)的期望與方差,比較,即可得出結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線C1的極坐標(biāo)方程為ρcos(θ﹣ )=﹣1,曲線C2的極坐標(biāo)方程為ρ=2 cos(θ﹣ ).以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系.
(1)求曲線C2的直角坐標(biāo)方程;
(2)求曲線C2上的動(dòng)點(diǎn)M到曲線C1的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列各函數(shù)中,最小值等于2的函數(shù)是( )
A.y=x+
B.y=cosx+ (0<x< )
C.y=
D.y=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在棱長(zhǎng)為2的正方體ABCD﹣A1B1C1D1中,E是BC的中點(diǎn),F(xiàn)是DD1的中點(diǎn),
(1)求證:CF∥平面A1DE;
(2)求二面角A1﹣DE﹣A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知函數(shù), .
(I)求函數(shù)上零點(diǎn)的個(gè)數(shù);
(II)設(shè),若函數(shù)在上是增函數(shù).
求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某輛汽車(chē)以x km/h的速度在高速公路上勻速行駛(考慮到高速公路行車(chē)安全要求60≤x≤120)時(shí),每小時(shí)的油耗(所需要的汽油量)為,其中k為常數(shù),若汽車(chē)以120km/h的速度行駛時(shí),每小時(shí)的油耗為11.5L.
(1)求k的值;
(2)求該汽車(chē)每小時(shí)油耗的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正三棱柱ABC﹣A1B1C1中,已知AB=CC1=2,則異面直線AB1和BC1所成角的余弦值為( )
A.0
B.
C.﹣
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱錐D﹣ABC中,AB=BC=1,AD=2,BD= ,AC= ,BC⊥AD,則三棱錐的外接球的表面積為( )
A. π
B.6π
C.5π
D.8π
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=loga(3﹣ax)(a>0,a≠1)
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的定義域;
(2)是否存在實(shí)數(shù)a,使函數(shù)f(x)在[1,2]遞減,并且最大值為1,若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com