【題目】某輛汽車以x km/h的速度在高速公路上勻速行駛(考慮到高速公路行車安全要求60≤x≤120)時(shí),每小時(shí)的油耗(所需要的汽油量)為,其中k為常數(shù),若汽車以120km/h的速度行駛時(shí),每小時(shí)的油耗為11.5L.
(1)求k的值;
(2)求該汽車每小時(shí)油耗的最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】盒子中有大小相同的球6個(gè),其中標(biāo)號(hào)為1的球2個(gè),標(biāo)號(hào)為2的球3個(gè).標(biāo)號(hào)為3的球1個(gè),第一次從盒子中任取1個(gè)球,放回后第二次再任取1個(gè)球 (假設(shè)取到每個(gè)球的可能性都相同).記第一次與第二次取到球的標(biāo)號(hào)之和為ξ.
(1)求隨機(jī)變量ξ的分布列:
(2)求隨機(jī)變量ξ的期望Eξ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別是橢圓的左、右焦點(diǎn),離心率為,分別是橢圓的上、下頂點(diǎn),.
(1)求橢圓的方程;
(2)過作直線與交于兩點(diǎn),求三角形面積的最大值(是坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【選修4—4:坐標(biāo)系與參數(shù)方程】
將圓上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?/span>2倍,得曲線C.
(Ⅰ)寫出C的參數(shù)方程;
(Ⅱ)設(shè)直線與C的交點(diǎn)為,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求過線段的中點(diǎn)且與垂直的直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校設(shè)計(jì)了一個(gè)實(shí)驗(yàn)考察方案:考生從6道備選題中隨機(jī)抽取3道題,按照題目要求獨(dú)立完成全部實(shí)驗(yàn)操作,規(guī)定:至少正確完成其中的2道題便可通過.己知6道備選題中考生甲有4道能正確完成,2道題不能完成;考生乙每題正確完成的概率都是 ,且每題正確完成與否互不影響.
(I) 求甲考生通過的概率;
(II) 求甲、乙兩考生正確完成題數(shù)的概率分布列,和甲、乙兩考生的數(shù)學(xué)期望;
(Ⅲ)請分析比較甲、乙兩考生的實(shí)驗(yàn)操作能力.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=﹣x3+ax,其中a∈R,g(x)=﹣ x ,且f(x)<g(x)在(0,1]上恒成立.求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù) f (x) = x 2 + x,若不等式 f (-x) + f (x)≤2 | x | 的解集為C. (1)求集合C (2)若方程 f (a x)-a x + 1 = 5(a > 0,a≠1)在 C上有解,求實(shí)數(shù) a 的取值范圍; (3)記 f (x) 在C 上的值域?yàn)?/span> A,若 g(x) = x 3-3tx + ,x∈[0,1] 的值域?yàn)?/span>B,且 A B,求實(shí)數(shù) t 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,滿足f(x2)=[f(x)]2的是( )
A.f(x)=lnx
B.f(x)=|x+1|
C.f(x)=x3
D.f(x)=ex
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com