9.執(zhí)行如圖所示的程序框圖,輸出的S值為-4時,則輸入的S0的值為( 。
A.7B.8C.9D.10

分析 根據(jù)程序框圖,知當(dāng)i=4時,輸出S,寫出前三次循環(huán)得到輸出的S,列出方程求出S0的值.

解答 解:根據(jù)程序框圖,知當(dāng)i=4時,輸出S,
∵第一次循環(huán)得到:S=S0-1,i=2;
第二次循環(huán)得到:S=S0-1-4,i=3;
第三次循環(huán)得到:S=S0-1-4-9,i=4;
∴S0-1-4-9=-4,
解得S0=10
故選:D.

點(diǎn)評 本題主要考查了直到型循環(huán)結(jié)構(gòu),循環(huán)結(jié)構(gòu)有兩種形式:當(dāng)型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu),當(dāng)型循環(huán)是先判斷后循環(huán),直到型循環(huán)是先循環(huán)后判斷,屬于基礎(chǔ)題之列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.過兩點(diǎn)(2,5),(2,-5)的直線方程是( 。
A.x=5B.y=2C.x+y=2D.x=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如果函數(shù)f(x)的圖象關(guān)于原點(diǎn)對稱,在區(qū)間[1,5]上是減函數(shù),且最小值為3,那么f(x)在區(qū)間[-5,-1]上是(  )
A.增函數(shù)且最小值為3B.增函數(shù)且最大值為3
C.減函數(shù)且最小值為-3D.減函數(shù)且最大值為-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖所示是一個幾何體的三視圖,則這個幾何體的表面積為(  )
A.$20+4\sqrt{2}+4\sqrt{5}$B.$20+8\sqrt{2}$C.$20+8\sqrt{2}+4\sqrt{5}$D.$20+4\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=sin2x+sinxcosx,$x∈[0,\frac{π}{2}]$
(1)求f(x)的最小值;
(2)若$f(α)=\frac{3}{4}$,求sin2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知A={x|x2-2x-3≤0},$B=\left\{{y\left|{y=}\right.}\right.\left.{\sqrt{{x^2}+3}}\right\}$,則A∩B=( 。
A.$[{1,\sqrt{2}}]$B.$[{\sqrt{2},\sqrt{3}}]$C.$[{\sqrt{3},3}]$D.$[{2,\sqrt{3}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.扇形的圓心角是60°,半徑為2$\sqrt{3}$cm,則扇形的面積為2πcm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=x3+sinx+1,則f(-2015)+f(-2014)+f(-2013)+…+f(2014)+f(2015)=( 。
A.0B.2014C.4028D.4031

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}前n項和為Sn,滿足${S_n}=2{a_n}-2n(n∈{N^*})$
(1)證明:{an+2}是等比數(shù)列,并求{an}的通項公式;
(2)數(shù)列{bn}滿足bn=log2an+2,Tn為數(shù)列$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前n項和,求Tn

查看答案和解析>>

同步練習(xí)冊答案