【題目】已知定義域?yàn)?/span>R的函數(shù)fx)=是奇函數(shù).

(1)求實(shí)數(shù)ab的值;

(2)判斷并用定義證明fx)在(-∞,+∞)上的單調(diào)性;

(3)若對(duì)任意的x∈[1,2],存在t∈[1,2]使得不等式fx2+tx)+f(2x+m)>0成立,求實(shí)數(shù)m的取值范圍.

【答案】1a=2,b=1;(2)見解析;(3)(-∞-10).

【解析】

(1)根據(jù)奇函數(shù)的性質(zhì),列式f(0)=0,f(﹣1)=﹣f(1)可解得;

(2)先分離常數(shù),判斷單調(diào)遞減,再用定義作差證明;

(3)先根據(jù)奇偶性和單調(diào)性將函數(shù)不等式變形,去掉函數(shù)符號(hào)后,先按照對(duì)x恒成立,在按照對(duì)t有解轉(zhuǎn)化為最值解決.

解(1)因?yàn)?/span>fx)是定義在R上的奇函數(shù),f0=0,即b-1=0b=1,

f-x=-fxf-1=-f1),=-a=2

綜上所述:a=2,b=1;經(jīng)檢驗(yàn)滿足題意.

2)由(1)知:fx=+,fx)是R上的減函數(shù),

證明如下:

設(shè)x1x2,則fx1-fx2=++

=,

x1x2, ,fx1)>fx2),

fx)是R上的減函數(shù),

3fx2+tx+f2x+m)>0

fx2+tx)>-f2x+m

fx2+tx)>f-2x-m

x2+tx-2x-m

m-x2-2+tx 對(duì)任意的x[1,2]恒成立,

m-8-2t對(duì)t[1,2]有解,

m-8-2=-10,

所以實(shí)數(shù)m的取值范圍是(-∞,-10).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,側(cè)棱垂直于底面, , , , , 分別為, 的中點(diǎn).

1求證:平面平面

2求證:在棱上存在一點(diǎn),使得平面平面;

3求三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】調(diào)查表明,市民對(duì)城市的居住滿意度與該城市環(huán)境質(zhì)量、城市建設(shè)、物價(jià)與收入的滿意度有極強(qiáng)的相關(guān)性,現(xiàn)將這三項(xiàng)的滿意度指標(biāo)分別記為x、y、z,并對(duì)它們進(jìn)行量化:0表示不滿意,1表示基本滿意,2表示滿意,再用綜合指標(biāo)ω=x+y+z的值評(píng)定居民對(duì)城市的居住滿意度等級(jí):若ω≥4,則居住滿意度為一級(jí);若2≤ω≤3,則居住滿意度為二級(jí);若0≤ω≤1,則居住滿意度為三級(jí),為了解某城市居民對(duì)該城市的居住滿意度,研究人員從此城市居民中隨機(jī)抽取10人進(jìn)行調(diào)查,得到如下結(jié)果:

人員編號(hào)

1

2

3

4

5

(x,y,z)

(1,1,2)

(2,1,1)

(2,2,2)

(0,1,1)

(1,2,1)

人員編號(hào)

6

7

8

9

10

(x,y,z)

(1,2,2)

(1,1,1)

(1,2,2)

(1,0,0)

(1,1,1)


(1)在這10名被調(diào)查者中任取兩人,求這兩人的居住滿意度指標(biāo)z相同的概率;
(2)從居住滿意度為一級(jí)的被調(diào)查者中隨機(jī)抽取一人,其綜合指標(biāo)為m,從居住滿意度不是一級(jí)的被調(diào)查者中任取一人,其綜合指標(biāo)為n,記隨機(jī)變量ξ=m﹣n,求隨機(jī)變量ξ的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,梯形ABCD中,AD∥BC,∠C= ,以AB為直徑的⊙O恰與CD相切于點(diǎn)E,⊙O交BC于F,連結(jié)EF.

(1)求證:AD+BC=AB;
(2)求證:EF是AD與AB的等比中項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓 的離心率,短軸右端點(diǎn)為, 為線段的中點(diǎn).

(Ⅰ) 求橢圓的方程;

(Ⅱ)過點(diǎn)任作一條直線與橢圓相交于兩點(diǎn),試探究在軸上是否存在定點(diǎn),使得,若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè):實(shí)數(shù)滿足,其中;

:實(shí)數(shù)滿足.

Ⅰ)若,為真,求實(shí)數(shù)的取值范圍;

Ⅱ)若的必要不充分條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x+1)2ex , 設(shè)k∈[﹣3,﹣1],對(duì)任意x1 , x2∈[k,k+2],則|f(x1)﹣f(x2)|的最大值為(
A.4e3
B.4e
C.4e+e3
D.4e+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=bx﹣axlnx(a>0)的圖象在點(diǎn)(1,f(1))處的切線與直線平y(tǒng)=(1﹣a)x行.
(1)若函數(shù)y=f(x)在[e,2e]上是減函數(shù),求實(shí)數(shù)a的最小值;
(2)設(shè)g(x)= ,若存在x1∈[e,e2],使g(x1)≤ 成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于函數(shù)fx),若存在x0R,使fx0)=x0成立,則稱x0為函數(shù)fx)的不動(dòng)點(diǎn).已知fx)=x2+bx+c

(1)當(dāng)b=2,c=-6時(shí),求函數(shù)fx)的不動(dòng)點(diǎn);

(2)已知fx)有兩個(gè)不動(dòng)點(diǎn)為,求函數(shù)y=fx)的零點(diǎn);

(3)在(2)的條件下,求不等式fx)>0的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案