已知直線l:xcosθ+ysinθ=1,且0P⊥l于P,O為坐標(biāo)原點(diǎn),則點(diǎn)P的軌跡方程為( 。
A.x2+y2=1B.x2-y2=1C.x+y=1D.x-y=1
設(shè)P(x,y),則
∵0P⊥l于P
∴點(diǎn)O到直線l的距離等于|OP|
x2+y2
=
1
cos2θ+sin2θ
=1
∴x2+y2=1
故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓G:經(jīng)過橢圓的右焦點(diǎn)F及上頂點(diǎn)B,過橢圓外一點(diǎn)(m,0)()傾斜角為的直線L交橢圓與C、D兩點(diǎn).
(1)求橢圓的方程;
(2)若右焦點(diǎn)F在以線段CD為直徑的圓E的內(nèi)部,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在同一坐標(biāo)系中,方程
x2
a2
+
y2
b2
=1
與ax+by2=0(a>b>0)的曲線大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知動點(diǎn)M(x,y)在曲線C上,點(diǎn)M與定點(diǎn)F(1,0)的距離和它到直線m:x=4的距離的比是
1
2

(1)求曲線C的方程;
(2)點(diǎn)E(-1,0),∠EMF的外角平分線所在直線為l,直線EN垂直于直線l,且交FM的延長線于點(diǎn)N.試求點(diǎn)P(1,8)與點(diǎn)N連線的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知坐標(biāo)平面內(nèi)⊙C:(x+1)2+y2=
1
4
,⊙D:(x-1)2+y2=
49
4
.動圓P與⊙C外切,與⊙D內(nèi)切.
(1)求動圓圓心P的軌跡C1的方程;
(2)若過D點(diǎn)的斜率為2的直線與曲線C1交于兩點(diǎn)A、B,求AB的長;
(3)過D的動直線與曲線C1交于A、B兩點(diǎn),線段AB中點(diǎn)為M,求M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一動圓與已知圓O1(x+2)2+y2=1外切,與圓O2(x-2)2+y2=49內(nèi)切,
(1)求動圓圓心的軌跡方程C;
(2)已知點(diǎn)A(2,3),O(0,0)是否存在平行于OA的直線l與曲線C有公共點(diǎn),且直線OA與l的距離等于4?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓C1:x2+y2-4x+3=0,圓C2:x2+y2-8y+15=0,動點(diǎn)P到圓C1,C2上點(diǎn)的距離的最小值相等.
(1)求點(diǎn)P的軌跡方程;
(2)直線l:mx-(m2+1)y=4m,m∈R,是否存在m值使直線l被圓C1所截得的弦長為
6
3
,若存在,求出m值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,DP⊥x軸,點(diǎn)M在DP的延長線上,且
|DM|
|DP|
=
3
2
,當(dāng)點(diǎn)P在圓x2+y2=4上運(yùn)動時,求:動點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知m∈R,則動圓x2+y2+4mx-2my+6m2-4=0的圓心的軌跡方程為______.

查看答案和解析>>

同步練習(xí)冊答案