已知拋物線C:y2=2px(p>0),其焦點(diǎn)是橢圓mx2+4y2=1的右焦點(diǎn),且橢圓的離心率為
(Ⅰ)試求拋物線C的方程;
(Ⅱ)在y軸上截距為2的直線l與拋物線C交于M,N兩點(diǎn),以線段MN為直徑的圓過(guò)原點(diǎn),求直線l的方程;
(Ⅲ)若以原點(diǎn)為圓心,以t(t>0)為半徑的圓分別交拋物線C上半支和y軸正半軸于A,B兩點(diǎn),直線AB與x軸交于點(diǎn)Q,試用A點(diǎn)的橫坐標(biāo)x表示點(diǎn)Q的坐標(biāo).
【答案】分析:(Ⅰ)利用橢圓的離心率,求出m,可得右焦點(diǎn)坐標(biāo),從而可求拋物線C的方程;
(Ⅱ)設(shè)直線l的方程與拋物線聯(lián)立,利用以線段MN為直徑的圓過(guò)原點(diǎn),結(jié)合向量知識(shí),即可求直線l的方程;
(Ⅲ)確定A、B的坐標(biāo),可得直線的方程,令y=0,即可求得結(jié)論.
解答:解:(Ⅰ)∵橢圓mx2+4y2=1的離心率為,
,∴m=2
∴2x2+4y2=1的右焦點(diǎn)坐標(biāo)為(,0)
∵拋物線C:y2=2px(p>0),其焦點(diǎn)是橢圓mx2+4y2=1的右焦點(diǎn),
∴拋物線C的方程為y2=2x;
(Ⅱ)由題意,設(shè)l的方程為y=kx+2,設(shè)M(x1,y1)、N(x2,y2),
直線方程代入拋物線方程可得k2x2+(4k-2)x+4=0,則x1+x2=-,x1x2=
∴y1y2=8-
∵以線段MN為直徑的圓過(guò)原點(diǎn),∴
∴x1x2+y1y2=0

∴k=-1
∴l(xiāng)的方程為y=-x+2,即x+y-2=0;
(Ⅲ)設(shè)圓的方程為x2+y2=t,與拋物線方程聯(lián)立,可得x2+2x-t=0
設(shè)A(),則t=x2+2x,B(0,x2+2x
∴直線AB的方程為y-(x2+2x)=(x-0)
令y=0,則x=
∴Q(,0)
點(diǎn)評(píng):本題以拋物線為載體,考查拋物線的幾何性質(zhì),考查向量知識(shí)的運(yùn)用,考查學(xué)生分析解決問(wèn)題的能力,綜合性強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,A是拋物線上橫坐標(biāo)為4且位于x軸上方的點(diǎn). A到拋物線準(zhǔn)線的距離等于5,過(guò)A作AB垂直于y軸,垂足為B,OB的中點(diǎn)為M(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求拋物線C的方程;
(Ⅱ)過(guò)M作MN⊥FA,垂足為N,求點(diǎn)N的坐標(biāo);
(Ⅲ)以M為圓心,4為半徑作圓M,點(diǎn)P(m,0)是x軸上的一個(gè)動(dòng)點(diǎn),試討論直線AP與圓M的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:y2=2px(p>0),F(xiàn)為拋物線C的焦點(diǎn),A為拋物線C上的動(dòng)點(diǎn),過(guò)A作拋物線準(zhǔn)線l的垂線,垂足為Q.
(1)若點(diǎn)P(0,4)與點(diǎn)F的連線恰好過(guò)點(diǎn)A,且∠PQF=90°,求拋物線方程;
(2)設(shè)點(diǎn)M(m,0)在x軸上,若要使∠MAF總為銳角,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:y2=2Px(p>0)上橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)直線y=kx+b(k≠0)與拋物線C交于兩點(diǎn)A(x1,y1),B(x2,y2),且|y1-y2|=a(a>0),求證:a2=
16(1-kb)k2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:y2=4x,點(diǎn)M(m,0)在x軸的正半軸上,過(guò)M的直線l與C相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(I)若m=1,且直線l的斜率為1,求以AB為直徑的圓的方程;
(II)問(wèn)是否存在定點(diǎn)M,不論直線l繞點(diǎn)M如何轉(zhuǎn)動(dòng),使得
1
|AM|2
+
1
|BM|2
恒為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:y2=8x與點(diǎn)M(-2,2),過(guò)C的焦點(diǎn),且斜率為k的直線與C交于A,B兩點(diǎn),若
MA
MB
=0,則k=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案