【題目】為了解高一學(xué)生暑假里在家讀書情況,特隨機調(diào)查了50名男生和50名女生平均每天的閱讀時間(單位:分鐘),統(tǒng)計如下表:

(1)根據(jù)統(tǒng)計表判斷男生和女生誰的平均讀書時間更長?并說明理由;

(2)求100名學(xué)生每天讀書時間的平均數(shù),并將每天平均時間超過和不超過平均數(shù)的人數(shù)填入下列的列聯(lián)表:

(3)根據(jù)(2)中列聯(lián)表,能否有99%的把握認為“平均閱讀時間超過或不超過平均數(shù)是否與性別有關(guān)?”

附:

0.050

0.010

0.001

3.841

6.635

10.828

【答案】(1)見解析;(2)見解析;(3)見解析;

【解析】

(1)對表中數(shù)據(jù)的平均數(shù),集中程度及中位數(shù)分析即可。

(2)計算出100名學(xué)生的平均讀書時間,對照表格求解即可

(3)由獨立性檢驗公式直接計算再判斷即可。

(1)女生平均每天讀書時間更長

理由如下:(i)分別求出男女生的平均讀書時間可知.

(ii)由統(tǒng)計表可估計,男生讀書時間的中位數(shù)大約為36.5分鐘,女生讀書時間的中位數(shù)大約是48.5分鐘,因此女生平均每天讀書時間更長.

(iii)由統(tǒng)計表可知,多數(shù)男生讀書時間主要集中在之間,而女生主要集中在之間,因此女生平均每天讀書時間更長..

(2)可求100名學(xué)生的平均讀書時間為:

,

列聯(lián)表如下:

(3)由于,

所以沒有99%的把握認為閱讀時間超過或不超過平均數(shù)與性別有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若一個人下半身長(肚臍至足底)與全身長的比近似為,稱為黃金分割比),堪稱“身材完美”,且比值越接近黃金分割比,身材看起來越好,若某人著裝前測得頭頂至肚臍長度為72,肚臍至足底長度為103,根據(jù)以上數(shù)據(jù),作為形象設(shè)計師的你,對TA的著裝建議是( )

A.身材完美,無需改善B.可以戴一頂合適高度的帽子

C.可以穿一雙合適高度的增高鞋D.同時穿戴同樣高度的增高鞋與帽子

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直,CEAC,EFACAB=

(1)求證:CF⊥平面BDE;

(2)求二面角A-BE-D的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù).

)設(shè)不等式的解集為C,當時,求實數(shù)取值范圍;

)若對任意,都有成立,試求時,的值域;

)設(shè),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】質(zhì)量監(jiān)督局檢測某種產(chǎn)品的三個質(zhì)量指標,用綜合指標核定該產(chǎn)品的等級.若,則核定該產(chǎn)品為一等品.現(xiàn)從一批該產(chǎn)品中,隨機抽取10件產(chǎn)品作為樣本,其質(zhì)量指標列表如下:

(1)利用上表提供的樣本數(shù)據(jù)估計該批產(chǎn)品的一等品率;

(2)在該樣品的一等品中,隨機抽取2件產(chǎn)品,設(shè)事件為“在取出的2件產(chǎn)品中,每件產(chǎn)品的綜合指標均滿足”,求事件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,其離心率為,以原點為圓心,橢圓的短軸長為直徑的圓被直線截得的弦長等于.

(1)求橢圓的方程;

(2)設(shè)為橢圓的左頂點,過點的直線與橢圓的另一個交點為,與軸相交于點,過原點與平行的直線與橢圓相交于兩點,問是否存在常數(shù),使恒成立?若存在,求出;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為實數(shù),函數(shù)

1)當時,求在區(qū)間上的最大值;

2)設(shè)函數(shù)在區(qū)間上的最大值,求的解析式;

3)求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,,點為曲線上任意一點且滿足.

(1)求曲線的方程;

(2)設(shè)曲線軸交于兩點,點是曲線上異于、的任意一點,直線分別交直線于點、.試問在軸上是否存在一個定點,使得?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的離心率是,過點的動直線與橢圓相交于兩點,當直線軸平行時,直線被橢圓截得的線段長為.

(Ⅰ)求橢圓的方程;

(Ⅱ)在軸上是否存在異于點的定點使得直線變化時,總有?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案