【題目】如圖所示,已知線段AB在平面α內(nèi),線段AC⊥α,線段BD⊥AB,線段DD′⊥α于D′,如果∠DBD=30°,AB=AC=BD=1,則CD的長為

【答案】2
【解析】解:線段AB在平面α內(nèi),線段AC⊥α,線段BD⊥AB,線段DD′⊥α,∠DBD′=30°,AB=AC=BD=1,
由題意可知: = ,
= = + + +
=12+12+12+212cos60°
=4.
∴所求C、D間的距離為:2.
所以答案是2.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用空間中直線與平面之間的位置關(guān)系的相關(guān)知識(shí)可以得到問題的答案,需要掌握直線在平面內(nèi)—有無數(shù)個(gè)公共點(diǎn);直線與平面相交—有且只有一個(gè)公共點(diǎn);直線在平面平行—沒有公共點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若,求曲線在點(diǎn)處的切線方程;

(Ⅱ)若, 恒成立,求實(shí)數(shù)的取值范圍;

(Ⅲ)當(dāng)時(shí),討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F為拋物線y2=x的焦點(diǎn),點(diǎn)A,B在該拋物線上且位于x軸的兩側(cè), =2(其中O為坐標(biāo)原點(diǎn)),則△ABO與△AFO面積之和的最小值是(
A.2
B.3
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,點(diǎn)M、N分別為線段A1B、AC1的中點(diǎn).

(1)求證:MN∥平面BB1C1C;
(2)若D在邊BC上,AD⊥DC1 , 求證:MN⊥AD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: 的右焦點(diǎn)為F(3,0),過點(diǎn)F的直線交橢圓E于A、B兩點(diǎn).若AB的中點(diǎn)坐標(biāo)為(1,﹣1),則E的方程為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中,為常數(shù)且)在處取得極值.

(Ⅰ)當(dāng)時(shí),求的單調(diào)區(qū)間;

(Ⅱ)若上的最大值為1,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種多面體玩具共有12個(gè)面,在其十二個(gè)面上分別標(biāo)有數(shù)字1,2,3,…,12.若該玩具質(zhì)地均勻,則拋擲該玩具后,任何一個(gè)數(shù)字所在的面朝上的概率均相等.

為檢驗(yàn)?zāi)撑婢呤欠窈细,制定檢驗(yàn)標(biāo)準(zhǔn)為:多次拋擲該玩具,并記錄朝上的面上標(biāo)記的數(shù)字,若各數(shù)字出現(xiàn)的頻率的極差不超過0.05.則認(rèn)為該玩具合格.

(1)對某批玩具中隨機(jī)抽取20件進(jìn)行檢驗(yàn),將每個(gè)玩具各面數(shù)字出現(xiàn)頻率的極差繪制成莖葉圖(如圖所示),試估計(jì)這批玩具的合格率;

(2)現(xiàn)有該種類玩具一個(gè),將其拋擲100次,并記錄朝上的一面標(biāo)記的數(shù)字,得到如下數(shù)據(jù):

朝上面的數(shù)字

1

2

3

4

5

6

7

8

9

10

11

12

次數(shù)

9

7

8

6

10

9

9

8

10

9

7

8

1)試判定該玩具是否合格;

2)將該玩具拋擲一次,記事件:向上的面標(biāo)記數(shù)字是完全平方數(shù)(能寫成整數(shù)的平方形式的數(shù),如,9為完全平方數(shù));事件:向上的面標(biāo)記的數(shù)字不超過4.試根據(jù)上表中的數(shù)據(jù),完成以下列聯(lián)表(其中表示的對立事件),并回答在犯錯(cuò)誤的概率不超過0.01的前提下,能否認(rèn)為事件與事件有關(guān).

合計(jì)

合計(jì)

100

(參考公式及數(shù)據(jù): ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率 ,分別是橢圓的左、右頂點(diǎn),點(diǎn)P是橢圓上的一點(diǎn),直線PA、PB的傾斜角分別為α、β滿足tanα+tanβ=1,則直線PA的斜率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A=[a﹣3,a],函數(shù) (﹣2≤x≤5)的單調(diào)減區(qū)間為集合B.
(1)若a=0,求(RA)∪(RB);
(2)若A∩B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案