在周長為16的△PMN中,MN=6,則
PM
PN
的取值范圍是( 。
A、[7,+∞)
B、(0,7]
C、(7,16]
D、[7,16)
分析:利用向量的數(shù)量積公式表示出向量的數(shù)量積;利用三角形的余弦定理求出向量的夾角余弦;通過求二次函數(shù)的對稱軸求出范圍.
解答:解:設(shè)PM=x,則PN=10-x,∠MPN=θ
所以
PM
PN
=x(10-x)cosθ
在△PMN中,由余弦定理得cosθ=
(10-x)2+x2-36
2(10-x)x

x+6>10-x
10-x+6>x
,解得2<x<8
PM
PN
=x2-10x+32
(2<x<8),是一個開口向上的二次函數(shù),對稱軸為x=5
當x=5時最小為7,當x=2或x=8時最大為16
故答案為[7,16)
故選D.
點評:本題考查向量的數(shù)量積公式、三角形的余弦定理、二次函數(shù)的最值求法.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在周長為16的△PMN中,MN=6,則
PM
PN
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在周長為16的△PMN中,MN=6,則
PM
PN
的最小值是
7
7

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在周長為16的△PMN中,MN=6,則
PM
PN
的取值范圍是(  )
A.[7,+∞)B.(0,7]C.(7,16]D.[7,16)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在周長為16的△PMN中,MN=6,則
PM
PN
的最小值是______.

查看答案和解析>>

同步練習冊答案