【題目】已知拋物線的焦點(diǎn)為,若過點(diǎn)且斜率為1的直線與拋物線交于 兩點(diǎn),且.
(1)求拋物線的方程;
(2)若平行于的直線與拋物線相切于點(diǎn),求的面積.
【答案】(1);(2)
【解析】
(1)設(shè)出AB兩點(diǎn)坐標(biāo),根據(jù)拋物線性質(zhì)將AB長度轉(zhuǎn)化為AB橫坐標(biāo)的關(guān)系式.
設(shè)出直線AB方程,聯(lián)立拋物線方程,根據(jù)韋達(dá)定理得到橫坐標(biāo)和的關(guān)系,計(jì)算可得答案.
(2)設(shè)出直線方程,聯(lián)立拋物線方程,由于相切,得到P點(diǎn)坐標(biāo).計(jì)算得到面積
解:(1)因?yàn)?/span>過焦點(diǎn),所以,拋物線的準(zhǔn)線方程為,
設(shè)點(diǎn)坐標(biāo)分別是,,
則,
設(shè)直線方程為,代入拋物線方程得,
即,則,,所以,
拋物線方程為;
(2)設(shè)直線的方程為,與拋物線方程聯(lián)立,
消去得:(*),
由直線與拋物線相切得,且,
所以,代入方程(*)得,
所以切點(diǎn)的坐標(biāo)為,而直線的方程為,
點(diǎn)到直線的距離,
所以的面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假定生男孩和生女孩是等可能的,令{一個(gè)家庭中既有男孩又有女孩},{一個(gè)家庭中最多有一個(gè)女孩}.對下述兩種情形,討論與的獨(dú)立性.
(1)家庭中有兩個(gè)小孩;
(2)家庭中有三個(gè)小孩.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若方程有四個(gè)不等實(shí)根,不等式恒成立,則實(shí)數(shù)的最大值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“每天鍛煉一小時(shí),健康工作五十年,幸福生活一輩子.”一科研單位為了解員工愛好運(yùn)動是否與性別有關(guān),從單位隨機(jī)抽取30名員工進(jìn)行了問卷調(diào)查,得到了如下列聯(lián)表:
男性 | 女性 | 合計(jì) | |
愛好 | 10 | ||
不愛好 | 8 | ||
合計(jì) | 30 |
已知在這30人中隨機(jī)抽取1人抽到愛好運(yùn)動的員工的概率是.
(1)請將上面的列聯(lián)表補(bǔ)充完整(在答題卷上直接填寫結(jié)果,不需要寫求解過程),并據(jù)此資料分析能否有把握認(rèn)為愛好運(yùn)動與性別有關(guān)?
(2)若從這30人中的女性員工中隨機(jī)抽取2人參加一活動,記愛好運(yùn)動的人數(shù)為,求的分布列、數(shù)學(xué)期望.參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024/span> | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是函數(shù)定義域的一個(gè)子集,若存在,使得成立,則稱是的一個(gè)“準(zhǔn)不動點(diǎn)”,也稱在區(qū)間上存在準(zhǔn)不動點(diǎn),已知,.
(1)若,求函數(shù)的準(zhǔn)不動點(diǎn);
(2)若函數(shù)在區(qū)間上存在準(zhǔn)不動點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在浙江省和青海省各取面積大小一樣的A,B兩塊區(qū)域,分別調(diào)查人均可支配收入.獲得數(shù)據(jù)顯示,浙江省的A區(qū)域的人均可支配收入為35537元,青海省的B區(qū)域的人均可支配收入為24542元.
(1)能否得到這兩塊區(qū)域的人均可支配收入為(元)?
(2)若“A區(qū)域?yàn)?/span>70萬人,B區(qū)域?yàn)?/span>30萬人”,請問這兩塊區(qū)域的人均可支配收入為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,若函數(shù)有三個(gè)不同的零點(diǎn),,(其中),則的取值范圍為__________.
【答案】
【解析】如圖:
,,作出函數(shù)圖象如圖所示
,,作出函數(shù)圖象如圖所示
,由有三個(gè)不同的零點(diǎn)
,如圖
令
得
為滿足有三個(gè)零點(diǎn),如圖可得
,
點(diǎn)睛:本題考查了函數(shù)零點(diǎn)問題,先由導(dǎo)數(shù)求出兩個(gè)函數(shù)的單調(diào)性,繼而畫出函數(shù)圖像,再由函數(shù)的零點(diǎn)個(gè)數(shù)確定參量取值范圍,將問題轉(zhuǎn)化為函數(shù)的兩根問題來求解,本題需要化歸轉(zhuǎn)化,函數(shù)的思想,零點(diǎn)問題等較為綜合,有很大難度。
【題型】填空題
【結(jié)束】
17
【題目】已知等比數(shù)列的前項(xiàng)和為,且滿足.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某少數(shù)民族的刺繡有著悠久的歷史,如圖4①,②,③,④為她們刺繡最簡單的四個(gè)圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個(gè)圖形包含f(n)個(gè)小正方形.
(1)求出f(5)的值;
(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出f(n)的表達(dá)式;
(3)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,霧霾日趨嚴(yán)重,霧霾的工作、生活受到了嚴(yán)重的影響,如何改善空氣質(zhì)量已成為當(dāng)今的熱點(diǎn)問題,某空氣凈化器制造廠,決定投入生產(chǎn)某型號的空氣凈化器,根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計(jì)規(guī)律,每生產(chǎn)該型號空氣凈化器(百臺),其總成本為(萬元),其中固定成本為12萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為10萬元(總成本=固定成本+生產(chǎn)成本),銷售收入(萬元)滿足,假定該產(chǎn)品銷售平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計(jì)規(guī)律,請完成下列問題:
(1)求利潤函數(shù)的解析式(利潤=銷售收入-總成本);
(2)工廠生產(chǎn)多少百臺產(chǎn)品時(shí),可使利潤最多?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com