一水池有2個進水口,1個出水口,進出水速度如圖甲、乙所示. 某天0點到6點,該水池的蓄水量如圖丙所示.(至少打開一個水口)

給出以下3個論斷:①0點到3點只進水不出水;C②3點到4點不進水只出水;③4點到6點不進水不出水. 則正確論斷的個數(shù)是(   )
A.0B. 1C. 2D. 3
B

試題分析:由甲,乙圖得進水速度1,出水速度2,結(jié)合丙圖中直線的斜率解答:只進水不出水時,蓄水量增加是2,故①對;∴不進水只出水時,蓄水量減少是2,故②不對;二個進水一個出水時,蓄水量減少也是0,故③不對;只有①滿足題意,故答案為B。
點評:數(shù)形結(jié)合是解決此題的關(guān)鍵,本題容易錯選成①③,其實二個進水一個出水時,蓄水量減少也是0,這是個動態(tài)中的零增量。      
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),且.的導(dǎo)函數(shù),的圖像如右圖所示.若正數(shù)滿足,則的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的圖象大致是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

時,函數(shù)的圖象只可能是  (  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的定義域為開區(qū)間,導(dǎo)函數(shù) 內(nèi)的圖象如圖所示,則函數(shù)在開區(qū)間內(nèi)有極小值點
A.1個B.2個 C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題15分)已知函數(shù).
(1)當時,求的單調(diào)遞增區(qū)間;
(2)是否存在,使得對任意的,都有恒成立.若存在,求出的取值范圍; 若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的圖象是(   )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某公司為了實現(xiàn)1000萬元利潤的目標,準備制定一個激勵銷售人員的獎勵方案:在銷售利潤達到10萬元時,按銷售利潤進行獎勵,且獎金(單位:萬元)隨銷售利潤(單位:萬元)的增加而增加,但獎金總數(shù)不超過5萬元,同時獎金不能超過利潤的%.現(xiàn)有三個獎勵模型:,分析與推導(dǎo)哪個函數(shù)模型能符合該公司的要求?并給予證明.(注:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)的圖像如圖所示,則不等式 的解集是(    )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案