在平面直角坐標系中,若,且.
(1)求動點的軌跡的方程;
(2)已知定點,若斜率為的直線過點并與軌跡交于不同的兩點,且對于軌跡上任意一點,都存在,使得成立,試求出滿足條件的實數(shù)的值.
(1);(2).

試題分析:(1)設,則,,由可得,結合橢圓的定義可知,動點的軌跡是以為焦點,4為長軸長的橢圓,從而可以確定橢圓標準方程中的參數(shù)的取值,進而寫出橢圓的方程即可;(2)設,直線,聯(lián)立直線的方程與(1)中橢圓的方程,消去得到,進而根據(jù),且,再計算出,然后由確定的橫縱坐標,根據(jù)點在軌跡上,將點的坐標代入軌跡的方程并由的任意性,得到,從中求解,并結合即可得到滿足要求的的值.
試題解析:(1)設,則,
可得
∴動點到兩個定點的距離的和為4
∴軌跡是以為焦點的橢圓,且長軸長為
設該橢圓的方程為
則有,所以
所以軌跡的方程為
(2)設,直線的方程為,代入
消去
,且

設點,由可得
∵點





又因為的任意性,∴
,又,得
代入檢驗,滿足條件,故的值是
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知是橢圓的兩個焦點,為坐標原點,點在橢圓上,且,⊙是以為直徑的圓,直線與⊙相切,并且與橢圓交于不同的兩點

(1)求橢圓的標準方程;
(2)當,且滿足時,求弦長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知A,B分別是橢圓C1:+=1的左、右頂點,P是橢圓上異于A,B的任意一點,Q是雙曲線C2:-=1上異于A,B的任意一點,a>b>0.
(1)若P(,),Q(,1),求橢圓C1的方程;
(2)記直線AP,BP,AQ,BQ的斜率分別是k1,k2,k3,k4,求證:k1·k2+k3·k4為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的中心在坐標原點,焦點在軸上且過點,離心率是
(1)求橢圓的標準方程;
(2)直線過點且與橢圓交于兩點,若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,橢圓C:=1(a>b>0)的右焦點為F(4m,0)(m>0,m為常數(shù)),離心率等于0.8,過焦點F、傾斜角為θ的直線l交橢圓C于M、N兩點.

(1)求橢圓C的標準方程;
(2)若θ=90°,,求實數(shù)m;
(3)試問的值是否與θ的大小無關,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,橢圓C:=1(a>b>0)的左焦點為F,右頂點為A,動點M為右準線上一點(異于右準線與x軸的交點),設線段FM交橢圓C于點P,已知橢圓C的離心率為,點M的橫坐標為.

(1)求橢圓C的標準方程;
(2)設直線PA的斜率為k1,直線MA的斜率為k2,求k1·k2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設F1、F2分別是橢圓=1(a>b>0)的左、右焦點,若在直線x=上存在點P,使線段PF1的中垂線過點F2,則橢圓的離心率的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

離心率為的橢圓與雙曲線有相同的焦點,且橢圓長軸的端點,短軸的端點,焦點到雙曲線的一條漸近線的距離依次構成等差數(shù)列,則雙曲線的離心率等于(      )
A    B.   C.    D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

方程=1表示橢圓,則k的取值范圍是________.

查看答案和解析>>

同步練習冊答案