分析 構造函數(shù)g(x)=$\frac{f(x)}{{e}^{x-1}}$(x∈R),研究g(x)的單調性,結合原函數(shù)的性質和函數(shù)值,即可求解.
解答 解:設g(x)=$\frac{f(x)}{{e}^{x-1}}$(x∈R),
則g′(x)=$\frac{f′(x)-f(x)}{{e}^{x-1}}$,
∵f′(x)>f(x),
∴f′(x)-f(x)>0
∴g′(x)>0,
∴y=g(x)在定義域上單調遞增,
∵f(x+1)<ex,f(1)=1,
∴g(x+1)<g(1)
∴x+1<1,
∴x<0,
∴不等式f(x+1)<ex的解集為(-∞,0).
故答案為:(-∞,0).
點評 本題考查函數(shù)單調性與奇偶性的結合,結合已知條件構造函數(shù),然后用導數(shù)判斷函數(shù)的單調性是解題的關鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2a+b}{1-a+b}$ | B. | $\frac{2a+b}{1+a+b}$ | C. | $\frac{a+2b}{1-a+b}$ | D. | $\frac{a+2b}{1+a+b}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,0) | B. | (0,+∞) | C. | (-∞,1) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?x∈R,|x|+cosx<0 | B. | ?x∈R,|x|+cosx≤0 | C. | ?x∈R,|x|+cosx<0 | D. | ?x∈R,|x|+cosx≥0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $\frac{2}{3}$ | C. | $\frac{5}{3}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com