12.已知cos(x-$\frac{π}{3}$)=$\frac{1}{3}$,則cos(2x-$\frac{2π}{3}$)+sin2($\frac{π}{3}$-x)的值為( 。
A.$-\frac{1}{9}$B.$\frac{1}{9}$C.$\frac{5}{3}$D.$-\frac{5}{3}$

分析 由條件利用同角三角函數(shù)的基本關(guān)系,誘導公式、二倍角公式,求得要求式子的值.

解答 解:∵cos(x-$\frac{π}{3}$)=cos($\frac{π}{3}$-x)=$\frac{1}{3}$,
∴cos(2x-$\frac{2π}{3}$)+sin2($\frac{π}{3}$-x)=2${cos}^{2}(x-\frac{π}{3})$-1+[1-${cos}^{2}(\frac{π}{3}-x)$]=2•$\frac{1}{9}$-1+1-$\frac{1}{9}$=$\frac{1}{9}$,
故選:B.

點評 本題主要考查同角三角函數(shù)的基本關(guān)系,誘導公式、二倍角公式的應用,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

2.已知隨機變量ξ服從正態(tài)分布N(μ,σ2),若P(ξ<2)=P(ξ>6)=0.15,則P(2≤ξ<4)等于( 。
A.0.3B.0.35C.0.5D.0.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.鷹潭市龍虎山花語世界位于中國第八處世界自然遺產(chǎn),世界地質(zhì)公元、國家自然文化雙遺產(chǎn)地、國家AAAAA級旅游景區(qū)--龍虎山主景區(qū)排衙峰下,是一座獨具現(xiàn)代園藝風格的花卉公園,園內(nèi)匯集了3000余種花卉苗木,一年四季姹紫嫣紅花香四溢.花園景觀融合法、英、意、美、日、中六大經(jīng)典園林風格,景觀設計唯美新穎.玫瑰花園、香草花溪、臺地花海、植物迷宮、兒童樂園等景點錯落有致,交相呼應又自成一體,是世界園藝景觀的大展示.該景區(qū)自2015年春建成試運行以來,每天游人如織,郁金香、向日葵、虞美人等賞花旺季日入園人數(shù)最高達萬人.
某學校社團為了解進園旅客的具體情形以及采集旅客對園區(qū)的建議,特別在2017年4月1日賞花旺季對進園游客進行取樣調(diào)查,從當日12000名游客中抽取100人進行統(tǒng)計分析,結(jié)果如下:(表一)
年齡頻數(shù)頻率
[0,10)100.155
[10,20)
[20,30)250.251213
[30,40)200.21010
[40,50)100.164
[50,60)100.137
[60,70)50.0514
[70,80)30.0312
[80,90)20.0202
合計1001.004555
(1)完成表格一中的空位①-④,并在答題卡中補全頻率分布直方圖,并估計2017年4月1日當日接待游客中30歲以下人數(shù).
(2)完成表格二,并問你能否有97.5%的把握認為在觀花游客中“年齡達到50歲以上”與“性別”相關(guān)?
(3)按分層抽樣(分50歲以上與50以下兩層)抽取被調(diào)查的100位游客中的10人作為幸運游客免費領(lǐng)取龍虎山內(nèi)部景區(qū)門票,再從這10人中選取2人接受電視臺采訪,設這2人中年齡在50歲以上(含)的人數(shù)為ξ,求ξ的分布列
(表二)
50歲以上50歲以下合計
男生54045
女生154055
合計2080100
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知集合A={x∈N|($\frac{1}{2}$)x≤1},B={x|x2-2x-8≤0},則A∩B=( 。
A.{x|0≤x≤4}B.{0,1,2,3}C.{0,1,2,3,4}D.{1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=ex+m(m為常數(shù)),則f(m)=( 。
A.e-1B.1-eC.$1-\frac{1}{e}$D.$\frac{1}{e}-1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$+mx+mlnx.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)當m>0時,若對于區(qū)間[1,2]上的任意兩個實數(shù)x1,x2,且x1<x2,都有|f(x1)-f(x2)|<x22-x12成立,求實數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.甲乙兩名同學參加定點投籃測試,已知兩人投中的概率分別是$\frac{1}{2}$和$\frac{2}{3}$,假設兩人投籃結(jié)果相互沒有影響,每人各次投球是否投中也沒有影響.
(Ⅰ)若每人投球3次(必須投完),投中2次或2次以上,記為達標,求甲達標的概率;
(Ⅱ)若每人有4次投球機會,如果連續(xù)兩次投中,則記為達標.達標或能斷定不達標,則終止投籃.記乙本次測試投球的次數(shù)為X,求X的分布列和數(shù)學期望EX.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知函數(shù)f(x)=$\sqrt{3}$sin(2x+φ)+cos(2x+φ)為偶函數(shù),且在[0,$\frac{π}{4}$]上是增函數(shù),則φ的一個可能值為( 。
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{4π}{3}$D.$\frac{5π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知集合A={x∈R|-1<x<1},B={x∈R|x•(x-2)<0},那么A∩B=( 。
A.{x∈R|0<x<1}B.{x∈R|0<x<2}C.{x∈R|-1<x<0}D.{x∈R|-1<x<2}

查看答案和解析>>

同步練習冊答案