(2006•東城區(qū)二模)在△ABC中,a,b,c是角A、B、C所對的邊,且sinBcosC=2sinAcosB-cosBsinC.
(1)求cosB的值;
(2)若b=3,求ac的最大值.
分析:(1)已知等式移項(xiàng)后利用兩角和與差的正弦函數(shù)公式化簡,再利用誘導(dǎo)公式變形,根據(jù)sinA不為0求出cosB的值即可;
(2)利用余弦定理列出關(guān)系式,將b及cosB的值代入,利用基本不等式變形求出ac的最大值即可.
解答:解:(1)由已知得sin(B+C)=2sinAcosB,
∵A+B+C=180°,∴sin(B+C)=sinA,
∴sinA=2sinAcosB,
又∵sinA≠0,
∴cosB=
1
2
;
(2)由余弦定理,得b2=a2+c2-2accosB,即9=a2+c2-2ac×
1
2

∴ac+9=a2+c2≥2ac,即ac≤9,當(dāng)且僅當(dāng)a=c=3時取等號,
則ac的最大值為9.
點(diǎn)評:此題考查了余弦定理,兩角和與差的正弦函數(shù)公式,以及基本不等式的運(yùn)用,熟練掌握余弦定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2006•東城區(qū)二模)已知等差數(shù)列{an}中,a7+a9=10,a4=1,則a12的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•東城區(qū)二模)設(shè){an}是正數(shù)組成的等比數(shù)列,a1+a2=1,a3+a4=4,則a4+a5=
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•東城區(qū)二模)已知四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AD=1,AB=2,E、F分別是AB、PD的中點(diǎn).
(1)求證:AF∥平面PEC;
(2)求PC與平面ABCD所成角的大;
(3)求二面角P-EC-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•東城區(qū)二模)已知橢圓M的兩個焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),P是此橢圓上的一點(diǎn),且
PF1
PF2
=0
,
|PF1|
|PF2|
=8

(1)求橢圓M的方程;
(2)點(diǎn)A是橢圓M短軸的一個端點(diǎn),且其縱坐標(biāo)大于零,B、C是橢圓上不同于點(diǎn)A的兩點(diǎn),若△ABC的重心是橢圓的右焦點(diǎn),求直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•東城區(qū)二模)設(shè)f-1(x)是函數(shù)f(x)=log3(x+6)的反函數(shù),若[f-1(a)+6][f-1(b)+6]=27,則f(a+b)的值為( 。

查看答案和解析>>

同步練習(xí)冊答案