如圖,在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點(diǎn)E在棱AB上移動.
(Ⅰ)證明:D1E⊥A1D;
(Ⅱ)當(dāng)E為AB的中點(diǎn)時(shí),求異面直線AC與D1E所成角的余弦值;
(Ⅲ)AE等于何值時(shí),二面角D1-EC-D的大小為

【答案】分析:(I)以D為坐標(biāo)原點(diǎn),直線DA,DC,DD1分別為x,y,z軸,建立空間直角坐標(biāo)系,設(shè)AE=x,則我們可以確定長方體ABCD-A1B1C1D1中,各點(diǎn)的坐標(biāo),求出直線D1E和直線A1D的方向向量后,判斷他們的數(shù)量積為0,即可得到D1E⊥A1D;
(Ⅱ)由E為AB的中點(diǎn)時(shí),則我們可以求出滿足條件的E點(diǎn)的坐標(biāo),進(jìn)而求出直線AC與D1E的方向向量,代入向量夾角公式,即可得到答案.
(III)若二面角D1-EC-D的大小為,則平面D1EC的法向量與平面ECD的法向量的夾角大小為,求出平面D1EC的法向量,構(gòu)造關(guān)于x的方程,解方程即可得到滿足條件的AE的值.
解答:解:以D為坐標(biāo)原點(diǎn),直線DA,DC,DD1分別為x,y,z軸,建立空間直角坐標(biāo)系,
設(shè)AE=x,則A1(1,0,1),D1(0,0,1),E(1,x,0),A=(1,0,0),C(0,2,0).…(2分)
(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101222515202332419/SYS201311012225152023324018_DA/5.png">=(1,0,1),=(1,x,-1)
=1+0-1=0,所以D1E⊥A1D;
(Ⅱ)因?yàn)镋為AB中點(diǎn),則E(1,1,0),
從而=(1,1,-1),=(-1,2,0),
設(shè)AC與D1E所成的角為θ
…(9分)
(Ⅲ)設(shè)平面D1EC的法向量為=(a,b,c),
=(1,x-2,0),=(0,2,-1),=(0,0,1)
,有,
令b=1,從而c=2,a=2-x
=(2-x,1,2),…..(12分)
由題意,cos===
∴x=2+(不合題意,舍去),或x=2-
∴當(dāng)AE=2-時(shí),二面角D1-EC-D的大小為
點(diǎn)評:本題考查的知識點(diǎn)是向量語言表述線線的垂直、平行關(guān)系,用空間向量求直線間的夾角、距離,用空間向量求平面間的夾角,其中建立適當(dāng)?shù)目臻g坐標(biāo)系,求出各頂點(diǎn)的坐標(biāo)及相關(guān)直線的方向向量及相關(guān)平面的法向量的坐標(biāo),將空間平行、垂直及夾角問題轉(zhuǎn)化為向量的夾角問題是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖在長方體ABCD-A1B1C1D1中,三棱錐A1-ABC的面是直角三角形的個(gè)數(shù)為:
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,定義八個(gè)頂點(diǎn)都在某圓柱的底面圓周上的長方體叫做圓柱的內(nèi)接長方體,圓柱也叫長方體的外接圓柱.設(shè)長方體ABCD-A1B1C1D1的長、寬、高分別為a,b,c(其中a>b>c),那么該長方體的外接圓柱側(cè)面積的最大值等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若一個(gè)n面體中有m個(gè)面是直角三角形,則稱這個(gè)n面體的直度為.如圖,在長方體ABCD-A1B1C1D1中,四面體A1-ABC的直度為(    )

 

A.         B.               C.                 D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若一個(gè)n面體中有m個(gè)面是直角三角形,則稱這個(gè)n面體的直度為.如圖,在長方體ABCD-A1B1C1D1中,四面體A1-ABC的直度為(    )

 

A.            B.              C.              D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年四川省成都市高二3月月考數(shù)學(xué)試卷 題型:填空題

(文科做)(本題滿分14分)如圖,在長方體

ABCDA1B1C1D1中,AD=AA1=1,AB=2,點(diǎn)E在棱AB上移動.

(1)證明:D1EA1D;

(2)當(dāng)EAB的中點(diǎn)時(shí),求點(diǎn)E到面ACD1的距離;

(3)AE等于何值時(shí),二面角D1ECD的大小為.                      

 

 

 

(理科做)(本題滿分14分)

     如圖,在直三棱柱ABCA1B1C1中,∠ACB = 90°,CB = 1,

CA =AA1 =,M為側(cè)棱CC1上一點(diǎn),AMBA1

   (Ⅰ)求證:AM⊥平面A1BC;

   (Ⅱ)求二面角BAMC的大;

   (Ⅲ)求點(diǎn)C到平面ABM的距離.

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案