函數(shù)f(x)=x3-3x2-9x+3,若函數(shù)g(x)=f(x)-m,在x∈[-2,5]上有3個零點,則m的取值范圍為( 。
A、[1,8]
B、(-24,1]
C、[1,8)
D、(-24,8)
考點:利用導(dǎo)數(shù)研究函數(shù)的極值
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:利用導(dǎo)數(shù)的運算法則可得f′(x),列出表格即可得出函數(shù)f(x)的單調(diào)性極值與最值,再畫出函數(shù)y=f(x)與y=m的圖象,即可得出m的取值范圍.
解答: 解:f′(x)=3x2-6x-9=3(x2-2x-3)=3(x-3)(x+1),令f′(x)=0,解得x=-2或3.
其單調(diào)性如表格:
 x[-2,-1)-1 (-1,3) 3 (3,5]
f′(x)+ 0- 0+
 f(x) 單調(diào)遞增 極大值 單調(diào)遞減 極小值 單調(diào)遞增
可知:當(dāng)x=3時,函數(shù)f(x)取得極小值,f(3)=33-3×32-9×3+3=-24,
又f-2)=(-2)3-3×(-2)2-9×(-2)+3=1,可知最小值為f(3),即-24.
當(dāng)x=-1時,函數(shù)f(x)取得極大值,f(-1)=(-1)3-3×(-1)2-9×(-1)+3=8,
又f(5)=53-3×52-9×5+3=8,可知函數(shù)f(x)的最大值為f(5)或f(-1),即為8.
畫出圖象y=f(x)與y=m.
由圖象可知:當(dāng)m∈(1,8)時,函數(shù)y=f(x)與y=m的圖象由三個交點.因此當(dāng)m∈(1,8)時,函數(shù)g(x)=f(x)-m在x∈[-2,5]上有3個零點.
故選C.
點評:本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值及其圖象、方程的解的個數(shù)轉(zhuǎn)化為函數(shù)圖象的交點的個數(shù)、數(shù)形結(jié)合等基礎(chǔ)知識與基本技能方法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的首項為a1=2,2n2-(t+bn)n+
3
2
bn=0(t∈R,n∈N*)
.公比為q(q為正整數(shù)),且滿足3a3是8a1與a5的等差中項;數(shù)列{bn}滿足
(1)求數(shù)列{an}的通項公式;
(2)試確定t的值,使得數(shù)列{bn}為等差數(shù)列;
(3)當(dāng){bn}為等差數(shù)列時,對每個正整數(shù)k,在ak與ak+1之間插入bk個2,得到一個新數(shù)列{cn}.設(shè)Tn是數(shù)列{cn}的前n項和,試求滿足Tm=2cm+1的所有正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)O為坐標(biāo)原點,點M(1,1),若N(x,y)滿足
x-4y+3≤0
2x+y-12≤0
x≥1
.則
OM
ON
的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=
3
sin2x
,
1
,
n
=
1
3+cos2x
,設(shè)函數(shù)f(x)=
m
n

(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a、b、c分別是角A、B、C的對邊,若2
AC
BC
=
2
ab,c=2
2
,f(A)=4,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α為銳角,且tanα=
2
-1,函數(shù)f(x)=2xtan2α+sin(2α+
π
4
),數(shù)列{an}的首項a1=1,an+1=f(an).
(1)求函數(shù)f(x)的表達式;
(2)若數(shù)列{bn}滿足b1=a1,bn=log2(an+1),設(shè)Tn=
1
b1+n
+
1
b2+n
+…+
1
bn+n
,若Tn>m對x≥2恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的有
 

①函數(shù)y=log
1
2
(x2-2x-3)
的單調(diào)增區(qū)間是(-∞,1);
②若集合A={y|y=x-1},B={y|y=x2-1},則A∩B={(0,-1),(1,0)};
③若函數(shù)f(x)在(-∞,0),[0,+∞)都是單調(diào)增函數(shù),則f(x)在(-∞,+∞)上也是增函數(shù);
④函數(shù)y=
1-x2
|x+1|+|x-2|
是偶函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的三視圖如下,根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個幾何體的體積是( 。
A、
1
2
 cm3
B、
1
3
 cm3
C、
1
6
 cm3
D、
1
12
 cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足的條件
x-y≤0
x+y-1≥0
x-2y+2≥0
若z=x+3y+m的最小值為4,則m=( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)的最小值1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[3a,a+1]上不單調(diào),求實數(shù)a的取值范圍;
(3)在區(qū)間[-1,3]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方.

查看答案和解析>>

同步練習(xí)冊答案