5.函數(shù)f(x)=|x-1|+|x-2|.
(1)求不等式f(x)<3的解集;
(2)不等式f(x)≤a(x+$\frac{1}{2}$)的解集非空,求實(shí)數(shù)a的取值范圍.

分析 (1)去絕對值,再解不等式組可得不等式f(x)<3的解集;
(2)作出f(x)圖象,結(jié)合圖象可得a的取值.

解答 解:(1)去絕對值可得,x<1,-x+1-x+2<3,∴x>0,∴0<x<1;
1≤x≤2,x-1-x+2<3,成立;
x>2,x-1+x-2<3,∴x<3,∴2<x<3,
綜上所述,不等式的解集為{x|0<x<3};
(2)f(x)圖象如圖所示,直線y=a(x+$\frac{1}{2}$)繞點(diǎn)(-$\frac{1}{2}$,0)旋轉(zhuǎn),

由圖可得不等式f(x)≤a(x+$\frac{1}{2}$)的解集非空時,a的范圍為(-∞,-2)∪[$\frac{2}{5}$,+∞).

點(diǎn)評 本題考查絕對值不等式的解法及應(yīng)用,數(shù)形結(jié)合是解決問題的關(guān)鍵,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知△ABC的三個內(nèi)角A、B、C成等差數(shù)列,面積為10$\sqrt{3}$cm2,周長為20cm,求△ABC的三邊長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.求解關(guān)于x的不等式:3x2-ax-a>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖所示,AB為圓D的直徑,BC為圓O的切線,過A作OC的平行線交圓O于D,BD與OC相交于E.
(I)求證:CD為圓O的切線;
(Ⅱ)若OA=AD=4,求OC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)的對入院的60人進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:
患心肺疾病不患心肺疾病合計
m6
12n
合計60
已知在女病人中隨機(jī)抽取一人,抽到患心肺疾病的人的概率為$\frac{2}{5}$.
(1)求出m,n;
(2)探討是否有99.5%的把握認(rèn)為患心肺疾病與性別有關(guān)?說明理由;
參考:
①臨界值表
P(k2>k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
②${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)F(x)=-ax+lnx+1(a∈R).
(1)討論函數(shù)F(x)的單調(diào)性;
(2)定義在R上的偶函數(shù)f(x)在[0,+∞)上遞減,若不等式f(F(x))+f(ax-lnx-1)≥2f(1)對x∈[1,3]恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,圓O與等腰直角三角形ABC的兩直角邊相切,交斜邊BC于F,G兩點(diǎn),且BF=FG=$\sqrt{2}$,則圓O的半徑等于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.十八屆五中全會公報指出:努力促進(jìn)人口均衡發(fā)展,堅持計劃生育的基本國策,完善人口發(fā)展戰(zhàn)略,全面實(shí)施一對夫婦可生育兩個孩子的政策,提高生殖健康、婦幼保健、托幼等公共服務(wù)水平,為了解適齡公務(wù)員對放開生育二胎政策的態(tài)度,某部門隨機(jī)調(diào)查了200位30到40歲的公務(wù)員,得到情況如表:
 男公務(wù)員女公務(wù)員
生二胎8040
不生二胎4040
(1)是否有99%以上的把握認(rèn)為“生二胎與性別有關(guān)”,并說明理由;
(2)采用分層抽樣的方式從男公務(wù)員中調(diào)查6人,并對其中的3人進(jìn)行回訪,則這三人都要生二胎的概率是多少?
附:k2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(k2≥k00.0500.0100.001
K03.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的一條漸近線經(jīng)過圓(x-1)2+(y-2$\sqrt{2}}$)2=16的圓心,則此雙曲線的離心率是( 。
A.2B.3C.$\sqrt{5}$D.9

查看答案和解析>>

同步練習(xí)冊答案