【題目】某市司法部門為了宣傳《憲法》舉辦法律知識(shí)問答活動(dòng),隨機(jī)對(duì)該市18~68歲的人群抽取一個(gè)容量為n的樣本,并將樣本數(shù)據(jù)分成五組:[18,28),[28,38),[38,48),[48,58),[58,68),再將其按從左到右的順序分別編號(hào)為第1組,第2組,…,第5組,繪制了樣本的頻率分布直方圖;并對(duì)回答問題情況進(jìn)行統(tǒng)計(jì)后,結(jié)果如下表所示.
組號(hào) | 分組 | 回答正確的人數(shù) | 回答正確的人數(shù)占本組的比例 |
第1組 | [18,28) | 5 | 0.5 |
第2組 | [28,38) | 18 | a |
第3組 | [38,48) | 27 | 0.9 |
第4組 | [48,58) | x | 0.36 |
第5組 | [58,68) | 3 | 0.2 |
(1)分別求出a,x的值;
(2)從第2,3,4組回答正確的人中用分層抽樣方法抽取6人,則第2,3,4組每組應(yīng)各抽取多少人?
(3)在(2)的前提下,決定在所抽取的6人中隨機(jī)抽取2人頒發(fā)幸運(yùn)獎(jiǎng),求:所抽取的人中第2組至少有1人獲得幸運(yùn)獎(jiǎng)的概率.
【答案】
(1)解:第1組人數(shù)5÷0.5=10,所以n=10÷0.1=100,
第2組頻率為:0.2,人數(shù)為:100×0.2=20,所以a=18÷20=0.9,
第4組人數(shù)100×0.25=25,所以x=25×0.36=9
(2)解:第2,3,4組回答正確的人的比為18:27:9=2:3:1,所以第2,3,4組每組應(yīng)各依次抽取2人,3人,1人.
(3)解:記“所抽取的人中第2組至少有1人獲得幸運(yùn)獎(jiǎng)”為事件A,抽取的6人中,第2組的設(shè)為a1,a2,第3組的設(shè)為b1,b2,b3,第4組的設(shè)為c,則從6名幸運(yùn)者中任取2名的所有可能的情況有15種,它們是:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,c),(a2,b1),(a2,b2),(a2,b3),(a2,c),(b1,b2),(b1,b3),(b1,c),(b2,b3),(b2,c),(b3,c).…(11分)
其中第2組至少有1人的情況有9種,他們是:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,c),(a2,b1),
(a2,b2),(a2,b3),(a2,c).
∴P(A)= .
答:所抽取的人中第2組至少有1人獲得幸運(yùn)獎(jiǎng)的概率為
【解析】(1)由回答對(duì)的人數(shù):每組的人數(shù)=回答正確的概率,分別可求得要求的值;(2)由分層抽樣按比例抽取的特點(diǎn)可得各組的人數(shù);(3)記抽取的6人中,第2組的記為a1 , a2 , 第3組的記為b1 , b2 , b3 , 第4組的記為c,列舉可得從6名學(xué)生中任取2名的所有可能的情況,以及其中第2組至少有1人的情況種數(shù),由古典概型可得概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD所在平面與等腰直角三角形BEC所在平面互相垂直,BE⊥EC,AB=BE,M為線段AE的中點(diǎn).
(Ⅰ) 證明:BM⊥平面AEC;
(Ⅱ) 求MC與平面DEC所成的角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),若函數(shù)的導(dǎo)函數(shù)的圖象與軸交于, 兩點(diǎn),其橫坐標(biāo)分別為, ,線段的中點(diǎn)的橫坐標(biāo)為,且, 恰為函數(shù)的零點(diǎn),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:x2+4y2=16,點(diǎn)M(2,1).
(1)求橢圓C的焦點(diǎn)坐標(biāo)和離心率;
(2)求通過M點(diǎn)且被這點(diǎn)平分的弦所在的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形中, 與相交于點(diǎn), 平面, .
(I)求證: 平面;
(II)當(dāng)直線與平面所成的角的余弦值為時(shí),求證: ;
(III)在(II)的條件下,求異面直線與所成的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖,底面是正三角形的直三棱柱中,D是BC的中點(diǎn),.
(Ⅰ)求證:平面;
(Ⅱ)求的A1 到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】福利彩票“雙色球”中紅球的號(hào)碼可以從01,02,03,…,32,33這33個(gè)二位號(hào)碼中選取,小明利用如圖所示的隨機(jī)數(shù)表選取紅色球的6個(gè)號(hào)碼,選取方法是從第1行第9列和第10列的數(shù)字開始從左到右依次選取兩個(gè)數(shù)字,則第四個(gè)被選中的紅色球號(hào)碼為( )
81 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75 85 61 39 85 |
06 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49 |
A. 12 B. 33 C. 06 D. 16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體ABCD﹣A1B1C1D1中,M,N分別為棱AB,DD1的中點(diǎn),異面直線A1M和C1N所成的角為( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求滿足下列條件的橢圓方程:
(1)長軸在x軸上,長軸長等于12,離心率等于 ;
(2)橢圓經(jīng)過點(diǎn)(﹣6,0)和(0,8);
(3)橢圓的一個(gè)焦點(diǎn)到長軸兩端點(diǎn)的距離分別為10和4.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com