已知橢圓C:的離心率為,短軸一個端點(diǎn)到右焦點(diǎn)的距離為.
(1)求橢圓C的方程;
(2)設(shè)直線與橢圓C交于A、B兩點(diǎn),以弦為直徑的圓過坐標(biāo)原點(diǎn),試探討點(diǎn)到直線的距離是否為定值?若是,求出這個定值;若不是,說明理由.
(1);(2)是定值,定值為.
【解析】
試題分析:(1)利用橢圓的離心率為 ,短軸一個端點(diǎn)到右焦點(diǎn)的距離為,建立方程組,即可求橢圓C的方程;(2)分類討論,①當(dāng)軸時,得②當(dāng)與軸不垂直時,設(shè)直線的方程為.聯(lián)立,得,利用韋達(dá)定理,及以AB弦為直徑的圓過坐標(biāo)原點(diǎn)O,則有,得,再利用點(diǎn)到直線的距離公式,即可求得結(jié)論.
【解析】
(1)設(shè)橢圓的半焦距為,依題意 ,
所求橢圓方程為.
(2)設(shè),.
①當(dāng)軸時,設(shè)方程為:,此時兩點(diǎn)關(guān)于軸對稱,
又以為直徑的圓過原點(diǎn),設(shè)代人橢圓方程得:
②當(dāng)與軸不垂直時,
設(shè)直線的方程為.聯(lián)立,
整理得,
,.
又。
由以為直徑的圓過原點(diǎn),則有。 即: 故滿足: 得:
所以=。又點(diǎn)到直線的距離為: 。
綜上所述:點(diǎn)到直線的距離為定值.
考點(diǎn):1.直線與圓錐曲線的關(guān)系;2.橢圓的標(biāo)準(zhǔn)方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆山東省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
正五棱柱中,不同在任何側(cè)面且不同在任何底面的兩頂點(diǎn)的連線稱為它的對角線,那么一個正五棱柱對角線的條數(shù)共有( )
A.20 B.15 C.12 D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
函數(shù)的遞增區(qū)間是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
若函數(shù)有極值點(diǎn),且,若關(guān)于的方程的不同實數(shù)根的個數(shù)是( )
A.3 B.4 C.5 D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知點(diǎn)和在直線的兩側(cè),則的取值范圍是( )
A. B. C. D.不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省高二下學(xué)期期中檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題
直線與曲線交于兩點(diǎn),若的面積為1,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省高二下學(xué)期期中檢測理科數(shù)學(xué)試卷(解析版) 題型:選擇題
直線y=kx+1與曲線y=x3+ax+b相切于點(diǎn)A(1,3),則2a+b的值為( )
A.2 B.-1 C.1 D.-2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省高二下學(xué)期期中檢測文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知命題p:“”,命題p的原命題,逆命題,否命題,逆否命題中真命題的個數(shù)為____________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
證明不等式ex>x+1>㏑x,x>0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com